Systems and Means of Informatics
2025, Volume 35, Issue 1, pp 149-169
PROPERTIES AND OPTIMIZATION OF SELF-TIMED CIRCUITS
- V. N. Zakharov
- Yu. A. Stepchenkov
- Yu. G. Diachenko
- N. V. Morozov
- L. P. Plekhanov
- D. Yu. Stepchenkov
Abstract
The article is devoted to the brief overview of the development trends and achievements of self-timed (ST) circuits. Due to redundant data coding and two-phase discipline, ST circuits have a number of advantages over synchronous counterparts. They operate reliably with any cell delays, detect any constant faults, and have an extremely wide performance range in terms of supply voltage and ambient temperature. Practical development of ST units with varying complexity has proven the effectiveness of ST solutions, especially in highly reliable and fault-tolerant applications. The article presents the comparative test results of synchronous and ST circuit test chips and the performance and fault tolerance estimates for ST circuits of varying complexity. Group indication of multibit ST circuits increases their performance by 40% due to a slight increase (less than 3%) in hardware complexity. The developed design methods of protection against soft errors improve the natural immunity of ST circuits to adverse effects and ensure a level of fault tolerance of ST circuits several times higher than that of the synchronous counterparts.
[+] References (38)
- Varshavsky, V.I., M.A. Kishinevsky, V.B. Marakhovsky, and V.A. Peschansky. 1990. Self-timed control of concurrent processes. Kluver Academic Publs. 245 p.
- Sparsp, J. 2020. Introduction to asynchronous circuit design. Copenhagen, Denmark: DTU Compute, Technical University of Denmark. 269 p. Available at: https:// backend.orbit, dtu.dk/ws/portalfiles/porta 1/215895041 / JSPAjsync.bookZ^O.PDF. pdf (accessed March 6, 2025).
- Harris, D., and S. L. Harris. 2013. Digital design and computer architecture. Elsevier. 690 p.
- Zakharov, V., Yu. Stepchenkov, Yu. Diachenko, and Yu. Rogdestvenski. 2020. Self-timed circuitry retrospective. Conference (International) on Engineering Technologies and Computer Science Proceedings. Piscataway, NJ: IEEE. 58-64. doi: 10.1109/EnT48576.2020.00018.
- Plekhanov, L. P. 2013. Osnovy samosinkhronnykh elektronnykh skhem [Basics of self-timed electronic circuits]. Moscow: BINOM; Laboratoriya znaniy. 208 p. EDN: SUMKIV.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu.V. Rogdestvenski, and Yu. G. Diachenko. 2022. Approximate evaluation of the efficiency of synchronous and self-timed methodologies in problems of designing failure-tolerant computing and control systems. Automat. Rem. Contr. 83(2):264-272. doi: 10.1134/S0005117922020084. EDN: CDSNSD.
- Bink, A., and R. York. 2007. ARM996HS: The first licensable, clockless 32-bit processor core. IEEE Micro 27(2):58-68. doi: 10.1109/MM.2007.28.
- Kishinevsky, M., A. Kondratyev, A. Taubin, and V. Varshavsky. 1994. Concurrent hardware: The theory and practice of self-timed design. New York, NY: John Wiley & Sons. 368 p.
- Plekhanov, L. P., and Yu. A. Stepchenkov. 2006. Eksperimental'naya proverka nekotorykh svoystv strogo samosinkhronnykh skhem [Experimental verification of some properties of strictly self-timed circuits]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics 16:476-485. EDN: KZUWOX.
- Sokolov, I. A., Yu. A. Stepchenkov, V. S. Petrukhin, Yu. G. Diachenko, and V. N. Zakharov. 2007. Samosinkhronnaya skhemotekhnika - perspektivnyy put' realizatsii apparatury [Self-timed circuitry is the perspective way for hardware realization]. Sistemy vysokoy dostupnosti [Highly Available Systems] 3(1 -2):61-72.
- Stepchenkov, Yu., Yu. Diachenko, V. Zakharov, Yu. Rogdestvenski, N. Morozov, and D. Stepchenkov. 2009. Quasi-delay-insensitive computing device: Methodological aspects and practical implementation. Integrated circuit and system design: Power and timing modeling, optimization and simulation. Eds. J. Monteiro and R. Leuken. Lecture notes in computer science ser. Berlin, Heidelberg: Springer. 5953:276-285. doi: 10.1007/978-3-642-11802-932.
- Stepchenkov, Yu. A., Yu. G. Diachenko, Yu.V. Rogdestvenski, N. V. Morozov, and D.Yu. Stepchenkov. 2010. Razrabotka vychislitelya, nezavisyashchego ot zaderzhek elementov [Designing of the delay-independent computing device]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 20(1 ):5-23. EDN: NTMGCH.
- Stepchenkov, Yu. A., Yu.V. Rogdestvenski, Yu. G. Diachenko, D.Yu. Stepchenkov, and Yu. Shikunov. 2019. Energy efficient speed-independent 64-bit fused multiply- add unit. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings. IEEE. 1709-1714. doi: 10.1109/EIConRus.2019.8657207.
- IEEE Computer Society. 2008. IEEE standard for floating-point arithmetic 754-2008. 70 p. doi: 10.1109/IEEESTD.2008.4610935.
- Fant, K. M. 2005. Logically determined design: Clockless system design with NULL convention logic. New York, NY: John Wiley. 292 p. doi: 10.1002/0471702897.
- Edwards, D., A. Bardsley, L. Jani, L. Plana, and W. Toms. 2006. Balsa: A tutorial guide. Manchester. 157 p. Available at: https://apt.cs.manchester.ac.uk/ftp/ pub/amulet/balsa/3.5/BalsaManual3.5.pdf (accessed March 6, 2025).
- Tailor, R.A., and R.B. Reese. 2019. UNCLE - Unified NCL Environment - an NCL design tool. Asynchronous circuit applications. Institute of Engineering and Technology. 293-307. doi: 10.1049/PBCS061E_chl4.
- Sokolov, I. A., Yu. A. Stepchenkov, S. G. Bobkov, V. N. Zakharov, Yu. G. Diachenko, Yu.V. Rozhdestvenskiy, and A.V. Surkov. 2014. Bazis realizatsii super-EVM eksaflopsnogo klassa [Implementation basis of exaflops class supercomputer]. Informatika i ee Primeneniya - Inform. Appl. 8(1):45-70. doi: 10.14357/19922264140106. EDN: RYYFGD.
- Rogdestvensky, Yu. V., N. V. Morozov, Yu. A. Stepchenkov, and A. V. Rozhdestvenskene. 2006. Universal'naya podsistema analiza samosinkhronnykh skhem [Universal subsystem for self-timed circuits analysis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 16(1):463-475. EDN: KZUWON.
- Rogdestvenski, Yu. V., N. V. Morozov, and A.V. Rozhdestvenskene. 2010. Podsistema sobytiynogo analiza samosinkhronnykh skhem ASPEKT [ASPECT: A suite of self-timed event-driven analysis]. Problemy razrabotki perspektivnykh mikro- i na- noelektronnykh sistem [Problems of the perspective micro- and nanoelectronic systems development]. Moscow: IPPM RAN. 26-31.
- Plekhanov, L.P., A.N. Denisov, Yu. G. Diachenko, Yu. A. Stepchenkov, D.I. Mamonov, and D. Yu. Stepchenkov. 2019. Sintez samosinkhronnykh skhem v bazise BMK [Self-timed circuit synthesis in gate array basis]. 5-ya Mezhdunar. nauchn. konf. "Elektronnaya komponentnaya baza i mikroelektronnye moduli": Sb. tezisov [5th Scientific Conference (International) "Electronic Component Base and Microelectronic Modules": Collection of Abstracts]. Moscow: Tekhnosfera. 450-454.
- Stepchenkov, Y. A., V.N. Zakharov, Y. G. Diachenko, N. V. Morozov, and D. Y. Stepchenkov. 2015. Cell library for speed-independent VLSI. IEEE East-West Design and Test Symposium Proceedings. IEEE. 137-140. doi: 10.1109/EWDTS. 2015.7493111.
- Stepchenkov, Yu. A., A.N. Denisov, Yu. G. Diachenko, et al. 2017. Biblioteka funktsional'nykh yacheek dlya proektirovaniya samosinkhronnykh poluzakaznykh BMK mikroskhem seriy 5503/5507 [Library of functional cells for designing self-timed semicustom chips of the 5503 and 5597 series]. Moscow: Tekhnosfera. Vol. 4. 376 p.
- Sokolov, I. A., Yu. A. Stepchenkov, and Yu. G. Dyachenko. 2012. Self-timed RS-trigger with the enhanced noise immunity. U.S. Patent No. 8232825. 31 p.
- Sokolov, I. A., Yu. A. Stepchenkov, and Yu. G. Dyachenko. 2012. Self-timed trigger with single-rail data input. U.S. Patent No. 8324938. 34 p.
- Zakharov, V. N., Yu. A. Stepchenkov, Yu. G. Diachenko, L. P. Plekhanov, N. V. Morozov, and D. Yu. Diachenko. 2025. Samosinkhronnyy dvukhtaktnyy trigger s parafaznymi vkhodnymi i vykhodnymi signalami s nulevym speyserom [Self-timed push-pull trigger with paraphase input and output signals with zero spacer]. Patent RF No.2835382.
- Stepchenkov, Yu. A., V. S. Petrukhin, and Yu. G. Diachenko. 2006. Opyt razrabotki samosinkhronnogo yadra mikrokontrollera na bazovom matrichnom kristalle [Experience in self-timed microcontroller core design on basic gate-array]. Nano- i mikrosistemnaya tekhnika [Nano- and Microsystems Technology] 5:29{36. EDN: IAGLLN.
- Stepchenkov, Yu. A., Yu. G. Diachenko, Yu. V. Rogdestvenski, D. Yu. Diachenko and Y. I. Shikunov. 2020. Self-timed multiply-add-subtract unit alternates. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings.
IEEE. 1864-1868. doi: 10.1109/EIConRus49466.2020.9039039.
- Stepchenkov, Yu. A., Yu. G. Diachenko, Yu.V. Rogdestvenski, et al. 2019. Optimizatsiya indikatsii mnogorazryadnykh samosinkhronnykh skhem [Indication optimization in multibit self-timed circuits]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(4):14{27. doi: 10.14357/08696527190402. EDN: XFXKVZ.
- Stepchenkov, Yu. A., Yu. G. Diachenko, D.Yu. Stepchenkov, et al. 2023. Mul'tipleksiruemyy samosinkhronnyy konveyer [Multiplexed selftimed pipeline]. Siste- my i Sredstva Informatiki - Systems and Means of Informatics 33(2):4M2. doi: 10.14357/08696527230201. EDN: FLVEWP.
- Stepchenkov, Yu. A., Yu. G. Diachenko, N. V. Morozov, et al. 2023. Optimizatsiya samosinkhronnogo konveyera [Self-timed pipeline optimization]. Sistemy vysokoy do- stupnosti [Highly Available Systems] 19(1):5{13. doi: 10.18127/j20729472-202301 - 01. EDN: IRTFWY.
- Stepchenkov, Yu. A., A. N. Kamenskih, Yu. G. Diachenko, Yu. V. Rogdestvenski, and D.Yu. Diachenko. 2020. Improvement of the natural self-timed circuit tolerance to short-term soft errors. Advances Science Technology Engineering Systems J. 5(2):44{ 56. doi: 10.25046/aj050206.
- Sokolov, I., Yu. Stepchenkov, Yu. Diachenko, and D. Khilko. 2025. Mathematical models of critical soft error in synchronous and self-timed pipeline. Mathematics 13(5):695. 15 p. doi: 10.3390/math13050695.
- Stepchenkov, Yu. A., Yu. G. Diachenko, G. S. Appolonov, et al. 2025. Self-timed pipeline protection against critical fault. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings. IEEE. 179M82.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, N. V. Morozov, D.Yu. Stepchenkov, and D.Yu. Diachenko. 2022. Analiz sboeustoychivosti samosinkhronnogo konveyera [Self-timed pipeline's soft error tolerance analysis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 32(4):4M3. doi: 10.14357/ 08696527220401. EDN: NXADJN.
- Plekhanov, L. P. 22.08.2007. Programma sinteza kombinatsionnykh skhem na zadannoy biblioteke elementov SINTABIB [Program for synthesis of combinational circuits on a given library of elements SINTABIB]. Certificate on official registration of the computer program No. 2007613665.
- Morozov, N. V., Yu. G. Diachenko, D. Yu. Stepchenkov, and A. V. Rozhdestvenskene. 19.11.2021. Sistema kharakterizatsii samosinkhronnykh elementov SAKhIB. Versiya 4 [SAHIB: Self-timed cell characterization system, version 2]. Certificate on official registration of the computer program No. 2021668787.
- Zatsarinnyy, A. A., Yu. A. Stepchenkov, Yu. G. D'yachenko, et al. 2023. Avtomatizatsiya sinteza samosinkhronnykh skhem [Selftimed circuits design automation]. Sistemy vysokoy dostupnosti [Highly Available Systems] 19(3):48-56. doi: 10.18127/ j20729472-202303-04. EDN: IAPVXR.
[+] About this article
Title
PROPERTIES AND OPTIMIZATION OF SELF-TIMED CIRCUITS
Journal
Systems and Means of Informatics
Volume 35, Issue 1, pp 149-169
Cover Date
2025-04-20
DOI
10.14357/08696527250108
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuit; C-element; dual-rail; indication; pipeline; performance; fault tolerance
Authors
V. N. Zakharov  , Yu. A. Stepchenkov  , Yu. G. Diachenko  , N. V. Morozov  ,
L. P. Plekhanov  , and D. Yu. Stepchenkov
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|