Systems and Means of Informatics
2024, Volume 34, Issue 4, pp 115-136
ON AN APPROACH TO DATA ANALYSIS AND VISUALIZATION IN THE DOMAIN OF EMPLOYEE-ORGANIZATION RELATIONSHIPS
- Kishankumar Bhimani
- Khushbu Saradva
Abstract
An increasing number of domains in science and industry rely on the intensive use of data. In such domains, obtaining new knowledge is almost impossible without the use of modern methods of data analysis and visualization.
A typical example is the domain of human resource (HR) management. This paper proposes an approach to the application of exploratory data analysis, feature extraction from data, and predictive analytics to determine the relationships between an employee and an organization. Correlation analysis is used to identify relationships between data attributes and assess the strength of these dependencies. Word clouds and conditional feature selection are used during feature extraction. A feature that corresponds to the risk of an employee leaving the organization is implemented. The approach is applied on a nationwide dataset of organization's employee survey and contributes to computer science methods in sociology and HR management.
[+] References (31)
- Sias, P. M. 2008. Organizing relationships: Traditional and emerging perspectives on workplace relationships. SAGE Publications, Inc. 264 p.
- Levinson, H. 2009. Reciprocation: The relationship between man and organization. Consulting psychology: Selected articles by Harry Levinson. Eds. A. M. Freedman and K. H. Bradt. American Psychological Association. 31-47. doi: 10.1037/11848-002.
- Coyle-Shapiro, J. A. M., and L. M. Shore. 2007. The employee{organizationrelationship: Where do we go from here? Hum. Resour. Manage. R. 17(2):166-179. doi: 10.1016/j.hrmr.2007.03.008.
- Korshunov, A., I. Beloborodov, N. Buzun, et al. 2014. Analiz sotsial'nykh setey: metody i prilozheniya [Social network analysis: Methods and applications]. Trudy Instituta sistemnogo programmirovaniya RAN [Proceedings of the Institute for System Programming of the RAS] 26(1):439-456. EDN: RUMXCP.
- Balkin, D.B., and S. Werner. 2023. Theorizing the relationship between discretionary employee benefits and individual performance. Hum. Resour. Manage. R. 33(1): 100901. 10 p. doi: 10.1016/j.hrmr.2022.100901.
- Arzamasova, G. S., and I. A. Esaulova. 2021. Analysis of the environmental employee engagement: A case of a Russian enterprise. Upravlenets [The Manager] 12(3):56-66. doi: 10.29141/2218-5003-2021-12-3-5. EDN: MVREHS.
- Frye, A., C. Boomhower, M. Smith, et al. 2018. Employee attrition: What makes an employee quit? SMU Data Science Review 1(1):9. 28 p.
- Brewer, E. W., and L. Shapard. 2004. Employee burnout: A meta-analysis of the relationship between age or years of experience. Hum. Resour. Dev. Rev. 3(2): 102{ 123. doi: 10.1177/1534484304263335.
- Nair, P., J. Krishna, and D. K. Srivastava. 2020. Visual analytics toward prediction of employee erosion through data science tools. Information and communication technology for sustainable development. Advances in intelligent systems and computing ser. Singapore: Springer. 933:705-713. doi: 10.1007/978-981-13-7166-0-71.
- Sainju, B., C. Hartwell, and J. Edwards. 2021. Job satisfaction and employee turnover determinants in Fortune 50 companies: Insights from employee reviews from Indeed.com. Decis. Support Syst. 148:113582. 14 p. doi: 10.1016/j.dss.2021.113582.
- Sanchez, P. M. 2007. The employee survey: More than asking questions. J. Business Strategy 28(2):48-56. doi: 10.1108/02756660710732657.
- Munkova, D., M. Munk, and M. Vozar. 2013. Data pre-processing evaluation for text mining: Transaction/sequence model. Procedia Comput. Sci. 18:1198-1207. doi: 10.1016/j.procs.2013.05.286.
- Acuna, E., and C. Rodriguez. 2004. The treatment of missing values and its effect on classifier accuracy. Classification, clustering, and data mining applications. Eds. D. Banks, F.R. McMorris, P. Arabie, and W. Gaul. Berlin, Heidelberg: Springer. 639-647. doi: 10.1007/978-3-642-17103-l_60.
- Mukhiya, S.K., and U. Ahmed. 2020. Hands-on exploratory data analysis with Python: Perform EDA techniques to understand, summarize, and investigate your data. Packt Publishing Ltd. 352 p.
- Butcher, B., and B.J. Smith. 2020. Feature engineering and selection: A practical approach for predictive models. Am. Stat. 74(3):308{309. doi: 10.1080/ 00031305.2020.1790217.
- Shanin, I. A., and S. A. Stupnikov. 2021. Metody analiza dannykh elektroentsefalografii s primeneniem svertochnykh i rekurrentnykh neyronnykh setey [Electroencephalography data analysis with convolutional and recurrent neural networks]. Sistemy i Sred- stva Informatiki — Systems and Means of Informatics 31(2):36{46. doi: 10.14357/ 08696527210204. EDN: JDYCAG.
- Djukova, E.V., G. O. Masliakov, and A. P. Djukova. 2023. Logicheskie metody korrektnoy klassifikatsii dannykh [Logical methods of correct data classification]. Informatika i ee Primeneniya — Inform. Appl. 17(3):64{70. doi: 10.14357/ 19922264230309. EDN: OZHXOX.
- Kowsari, K., K. J. Meimandi, M. Heidarysafa, et al. 2019. Text classification algorithms: A survey. Information 10(4): 150. 68 p. doi: 10.3390/info10040150.
- Vinutha, H. P., B. Poornima, and B. M. Sagar. 2018. Detection of outliers using interquartile range technique from intrusion dataset. Information and decision sciences. Eds. S. Satapathy, J. Tavares, V. Bhateja, and J. Mohanty. Advances in intelligent systems and computing ser. Singapore: Springer. 701:511—518. doi: 10.1007/978-981- 10-7563-6_53.
- Dzisevic, R., and D. Sesok. 2019. Text classification using different feature extraction approaches. Open Conference of Electrical, Electronic and Information Sciences Proceedings. IEEE. Art. 8732167. 4 p. doi: 10.1109/eStream.2019.8732167.
- Fastje, F., J. Mesmer-Magnus, R. Guidice, and M. C. Andrews. 2023. Employee burnout: The dark side of performance-driven work climates. J. Organizational Effectiveness People Performance 10(1): 1—21. doi: 10.1108/J0EPP-10-2021-0274.
- Ponnuru, S.R., G. K. Merugumala, S. Padigala, et al. 2020. Employee attrition prediction using logistic regression. Int. J. Research Applied Science Engineering Technology 8(5):2871—2875. doi: 10.22214/ ijraset.2020.5481.
- Najafi-Zangeneh, S., N. Shams-Gharneh, A. Arjomandi-Nezhad, and S.H. Zol- fani. 2021. An improved machine learning-based employees attrition prediction framework with emphasis on feature selection. Mathematics 9(11): 1226. 14 p. doi: 10.3390/math9111226.
- Srivastava, D.K., and P. Nair. 2018. Employee attrition analysis using predictive techniques. Information and communication technology for intelligent systems. Smart innovation, systems and technologies ser. Cham: Springer. 83(1):293—300. doi: 10.1007/978-3-319-63673-3-35.
- Yandi, A., and H. B. H. Havidz. 2022. Employee performance model: Work engagement through j ob satisfaction and organizational commitment (a study of human resource management literature study). Dinasti Int. J. Management Science 3(3):547—565. doi: 10.31933/dijms.v3i3.1105.
- Kovaleva, A. V. 2022. Obzor problemy bar’erov dolzhnostnogo prodvizheniya v sovremennom obshchestve [Overview of the problem of barriers to career growth in the modern labor market]. Trudy Instituta sistemnogo analiza RAN [Proceedings of the Institute for Systems Analysis of the Russian Academy of Sciences] 71(4):28-38. doi: 10.14357/20790279220404. EDN: SDJHCH.
- Grzadzielewska, M. 2021. Using machine learning in burnout prediction: A survey. Child Adolescent Social Work J. 38(2):175-180.doi: 10.1007/s10560-020-00733-w.
- Caughlin, D.E., and T.N. Bauer. 2019. Data visualizations and human resource management: The state of science and practice. Res. Pers. Hum. Res. Man. 37:89132. doi:10.1108/S0742-730120190000037004.
- Anikin, V.I., O. V. Anikina, and A. A. Karmanova. 2016. Eksperimental’nyy analiz odnogo metoda klasterizatsii i ranzhirovaniya mnogomernykh dannykh neyronnoy set’yu Kokhonena [The experimental analysis of the method of clustering and ranking of multidimensional data using the Kohonen neural network]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 26(1):44-61. doi: 10.14357/08696527160104. EDN: VZBFMF.
- Chistova, E.V., A. O. Shelmanov, and I.V. Smirnov. 2019. Primenenie glubokogo obucheniya k modelirovaniyu dialoga na estestvennom yazyke [Natural language dialogue modelling with deep learning]. Trudy instituta sistemnogo analiza RAN [Proceedings of the Institute for Systems Analysis of the Russian Academy of Sciences] 69(1): 105{115. doi: 10.14357/20790279190110. EDN: ELNAMO.
- Meadow, C.T., B.R. Boyce, D. H. Kraft, and C. Barry. 2017. Text information retrieval systems. Elsevier. 364 p.
[+] About this article
Title
ON AN APPROACH TO DATA ANALYSIS AND VISUALIZATION IN THE DOMAIN OF EMPLOYEE-ORGANIZATION RELATIONSHIPS
Journal
Systems and Means of Informatics
Volume 34, Issue 4, pp 115-136
Cover Date
2024-12-10
DOI
10.14357/08696527240410
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
data analysis; data visualization; human resource management; employee{organization relationship
Authors
Kishankumar Bhimani and Khushbu Saradva
Author Affiliations
National Research University Higher School of Economics, 11 Pokrovsky Blvd., Moscow 109028, Russian Federation
|