Systems and Means of Informatics
2024, Volume 34, Issue 4, pp 3-15
A NEW APPROACH TO IMPLEMENTING LOGICAL FUNCTIONS IN FIELD-PROGRAMMABLE GATE ARRAYS
- S. F. Tyurin
- S. I. Sovetov
- Yu. A. Stepchenkov
- Yu. G. Diachenko
Abstract
The expansion of the functionality of the LUT (Look up Table) logic element of field-programmable gate array (FPGA) is considered. The proposed method uses the inactive half of the element’s transistor tree. The article studies a single-variable element 1-LUT implementation, which performs a logic function simultaneously with the variable decoding (DC), and its use to create an “n-LUT + DC FPGA.” The simulation validates the item’s performance and scaling to create n-LUT item. The analysis shows a significant gain of the proposed approach: reduced complexity in the number of transistors and reduced time delay. The developed element makes it possible to significantly increase the functionality of the logic of domestic FPGAs within the framework of existing restrictions that limit import substitution of the electronic component base.
[+] References (23)
- Stepchenkov, Yu. A., N. V. Morozov, Yu. G. Diachenko, D.V. Khilko, and D. Yu. Stepchenkov. 2020. Razvitie gibridnoy mnogoyadernoy rekurrentnoy arkhitektury na PLIS [Multicore hybrid recurrent architecture expansion on FPGA]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 30(4):95-101. doi: 10.14357/08696527200409. EDN: ALLSBO.
- Stepchenkov, Yu. A., N. V. Morozov, Yu. G. Diachenko, and D. V. Khilko. 2021. Apparatnaya realizatsiya rekurrentnogo obrabotchika signalov [Recurrent signal processor hardware implementation]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 31(3):113-122. doi: 10.14357/08696527210310. EDN: TMYYXC.
- Stepchenkov, Yu. A., N. V. Morozov, Yu. G. Diachenko, D.V. Khilko, D. Yu. Stepchenkov, and Yu. I. Shikunov. 2022. Apparatnaya realizatsiya algoritmov tsifrovoy obrabotki signalov v rekurrentnom potokovom protsessore na PLIS [Hardware implementation of the digital signal processing algorithms in recurrent signal processor on FPGA]. Izvestiya vuzov. Elektronika [Proceedings of Universities. Electronics] 27(3):356-366. doi: 10.24151/1561-5405-2022-27-3-356-366. EDN: NAIFLI.
- Pirogov, A. A., Yu. A. Pirogova, A. V. Bashkirov, M. Yu. Chepelev, and B. I. Zhilin. 2020. Metodika proektirovaniya preobrazovatelya koda Greya na PLIS [Design procedure of the Gray code converter on FPGA]. Vestnik Voronezhskogo instituta FSIN Rossii [Proceedings of Voronezh Institute of the Russian Federal Penitentiary Service] 3:9-14. EDN: QHAANU.
- Berezin, N. M., I. E. Chernetskaya, V. S. Panishchev, and A. M. Shabarov. 2021. Development of a device for multiplying numbers by means of FPGA. J. Phys. Conf. Ser. 2142:012001. 7 p. doi: 10.1088/1742-6596/2142/1/012001.
- Strogonov, A. 2023. Proektirovanie konechnykh avtomatov v prilozhenii STATEFLOW sistemy MATLAB/SIMULINK s posleduyushchey realizatsiey v bazise PLIS [Designing finite-state machine in MATLAB / SIMULINK system’s stateflow tool with subsequent implementation at the FPGA basis]. Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, and Business] 3(224):134-147. doi: 10.22184/1992-4178.2023.224.3.134.146. EDN: BDJLBU.
- Strogonov, A., M. Krivchun, and P. Gorodkov. 2020. Obzor programmnykh sredstv s otkrytym iskhodnym kodom dlya issledovaniya sovremennykh arkhitektur PLIS XILINX [Overview of open source software tools for researching modern XILINX FPGA architectures]. Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, and Business] 1(192):100{107. doi: 10.22184/1992-4178. 2020.192.1.100.107. EDN: UPNZSW.
- Arbuzov, I., A. Strogonov, and P. Gorodkov. 2019. Primer razrabotki proekta v bazise PLIS 5578TC024 [An example of project development based on FPGA 5578TS024]. Komponenty i tekhnologii [Components and Technologies] 7(216):66{69. EDN: GGJBLH.
- Strogonov, A., and P. Gorodkov. 2020. PLIS kompanii Guangdong Gowin Semiconductor Corporation [FPGA from Guangdong Gowin Semiconductor Corporation]. Komponenty i tekhnologii [Components and Technologies] 1(222):84{86. EDN: BIUCZX.
- Strogonov, A., and P. Gorodkov. 2022. Obzor PLIS kitayskikh proizvoditeley [Overview of FPGAs from Chinese manufacturers]. Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, and Business] 4(215):66{75. doi: 10.22184/1992-4178.2022.215.4.66.74. EDN: ZFMFUX.
- Levental, M. 2021. Tensor networks for simulating quantum circuits on FPGAs. arXiv.org. 16 p. Available at: https://arxiv.org/pdf/2108.06831v1.pdf (accessed October 4, 2024).
- Li, H., Y. Tang, Zh. Que, and J. Zhang. 2022. FPGA accelerated post-quantum cryptography. IEEE T. Nanotechnol. 21:685^91. doi: 10.1109/TNANO.2022.3217802.
- Giorgio, A. 2024. Project and implementation of a quantum logic gate emulator on FPGA using a model-based design approach. IEEE Access 12:41317^1353. doi: 10.1109/ACCESS.2024.3377458.
- Ktari, J., T. Frikha, M. Hamdi, N. Affes, and H. Hamam. 2024 (in press). Enhancing blockchain security and efficiency through FPGA-based consensus mechanisms and post-quantum cryptography. Recent Advances Electrical Electronic Engineering. doi: 10.2174/0123520965288815240424054237.
- Rahimi, H. 2023. Optimum implementation of digital logic circuits on 3D FPGAs. Sanandaj, Iran: University of Kurdistan. Master Thesis. doi: 10.13140/ RG.2.2.24347.85283.
- Vikhorev, R. 2016. Universal logic cells to implement systems functions. NW Russia Young Researchers in Electrical and Electronic Engineering Conference Proceedings. IEEE. 373{375. doi: 10.1109/EIConRusNW.2016.7448197.
- Vikhorev, R. 2018. Improved FPGA logic elements and their simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings. IEEE. 259{264. doi: 10.1109/EIConRus.2018.8317080.
- Tyurin, S. F., and R. V. Vikhorev. 2021. A decoder — look up tables for FPGAs. IJC 20(3):365{373. doi: 10.47839/ijc.20.3.2282.
- Vasenin, I. A., S.I. Sovetov, N. E. Oputin, and S.F. Tyurin. 2023. Advanced logic gates for FPGAs. 24th Conference (International) of Young Professionals in Electron Devices and Materials Proceedings. IEEE. 110G15. doi: 10.1109/EDM58354. 2023.10225215.
- Mead, C. A., and L. Conway. 1980. Introduction to VLSI systems. Addison-Wesley. 426 p.
- Shegal, A. A. 2014. Primenenie programmnogo kompleksa Multisim dlya proektirovaniya ustroystv na mikrokontrollerakh: Laboratornyy praktikum [Application of the Multisim software package for designing devices on microcontrollers: Laboratory practical training]. Ekaterinburg: Ural University Press. 114 p.
- Etienne, S. 2009. Microwind & Dsch version 3.5: User’s manual lite version. Toulouse. 130 p.
- Stepchenkov, Yu. A., A. N. Kamenskih, S. F. Tyurin, and Yu. V. Rogdestvenski. 2016. Modeli otkazoustoychivykh samosinkhronnykh skhem [Models of fault-tolerant selftimed circuits]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics
26(4):19{30. doi: 10.14357/08696527160402. EDN: XAKZAL.
[+] About this article
Title
A NEW APPROACH TO IMPLEMENTING LOGICAL FUNCTIONS IN FIELD-PROGRAMMABLE GATE ARRAYS
Journal
Systems and Means of Informatics
Volume 34, Issue 4, pp 3-15
Cover Date
2024-12-10
DOI
10.14357/08696527240401
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
logic function; FPGA; LUT; variable set decoding
Authors
S. F. Tyurin , , S. I. Sovetov , Yu. A. Stepchenkov , and Yu. G. Diachenko
Author Affiliations
Perm National Research Polytechnic University, 29 Komsomolsky Prosp., Perm 614990, Russian Federation
Perm State University, 15 Bukireva Str., Perm 614068, Russian F
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|