Systems and Means of Informatics
2024, Volume 34, Issue 3, pp 123-135
SELF-TIMED UP COUNTER IMPLEMENTATION
- Yu. A. Stepchenkov
- Yu. G. Diachenko
- N. V. Morozov
- D. Yu. Stepchenkov
- D. Yu. Diachenko
Abstract
The article is devoted to the problem of self-timed (ST) binary up counter implementation. The ST circuits are an alternative to the synchronous ones when implementing digital units. The ST basis ensures stable operation of a digital unit regardless of any delays in the internal logical cells. A two-phase operating discipline and full indication of all circuit's switches provide such behavior but they require some hardware redundancy. In terms of permissible operating conditions including supply voltage and ambient temperature, ST circuits have a significant advantage over synchronous counterparts. Sequential ST counters are less redundant than combinational ST circuits due to the simpler indication subcircuit. Their synthesis is quite simply formalized on the readymade counting ST flip-flops basis. However, to implement their ST preset, one should perform a certain time sequence of their inputs. The article considers the circuitry basis for the ST up counter implementation and proposes optimal circuitry solutions in terms of hardware complexity that provide ST counter preset.
[+] References (24)
- Varshavskiy, V.I., M.A. Kishinevsky, V.B. Marakhovsky, et al. 1986. Avtomatnoe upravlenie asinkhronnymi protsessami v EVM i diskretnykh sistemakh [Automata control of asynchronous processes in computers and discrete systems]. Moscow: Nauka.
400 p. doi:10.13140/RG.2.1.2230.6644.
- Kishinevsky, M., A. Kondratyev, A. Taubin, and V. Varshavsky. 1994. Concurrent hardware: The theory and practice of self-timed design. New York, NY: J. Wiley & Sons. 386 p.
- Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters. 2007. Design automation of real-life asynchronous devices and systems. Foundations Trends Electronic Design Automation 2(1):U133. doi: 10.1561/1000000006.
- Plekhanov, L. P. 2013. Osnovy samosinkhronnykh elektronnykh skhem [Basics of selftimed electronic circuits]. Moscow: Binom. Laboratoriya znaniy [Binom. Laboratory of knowledge]. 208 p.
- Jiang, W., E.H.-M. Sha, Q. Zhuge, L. Yang, X. Chen, and J. Hu. 2019. On the design of time-constrained and buffer-optimal self-timed pipelines. IEEE T. Comput. Aid. D 38(8):1515{1528. doi: 10.1109/TCAD.2018.2846642.
- Chau, C., W.A. Hunt, M. Kaufmann, M. Roncken, and I. Sutherland. 2019. A hierarchical approach to self-timed circuit verification. 25th Symposium (International) on Asynchronous Circuits and Systems Proceedings. IEEE. 105-113. doi: 10.1109/ASYNC.2019.00022.
- Bingham, N., and R. Manohar. 2019. Self-timed adaptive digit-serial addition. IEEE T. VLSI Syst. 27(9):2131-2141. doi: 10.1109/TVLSI.2019.2918441.
- Sparsp, J. 2020. Introduction to asynchronous circuit design. Copenhagen, Denmark: DTU Compute, Technical University of Denmark. 275 p. Available at: https: //backend.orbit.dtu.dk/ws/files/215895041/JSPA_async_book_2020_PDF.pdf (accessed October 21, 2024).
- Skornyakova, A. Y., and R. V. Vikhorev. 2020. Self-timed LUT layout simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings. IEEE. 176-179. doi: 10.1109/EIConRus49466.2020.9039374.
- Kushnerov, A., M. Medina, and A. Yakovlev. 2021. Towards hazard-free multiplexer based implementation of self-timed circuits. 27th Symposium (International) on Asynchronous Circuits and Systems Proceedings. Piscataway, NJ: IEEE. 17-24. doi: 10.1109/ASYNC48570.2021.00011.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu.V. Rogdestvenski, and Yu. G. Diachenko. 2022. Approximate evaluation of the efficiency of synchronous and self-timed methodologies in problems of designing failure-tolerant computing and control systems. Automat. Rem. Contr. 83(2):264-272. doi: 10.1134/S0005117922020084.
- Plekhanov, L. P., and Yu. A. Stepchenkov. 2006. Eksperimental’naya proverka nekotorykh svoystv strogo samosinkhronnykh skhem [Experimental verification of some properties of strictly self-timed circuits]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 16:476-485. EDN: KZUWOX.
- Stepchenkov, Yu. A., Yu. G. Diachenko, and V. S. Petrukhin. 2006. Opyt razrabotki samosinkhronnogo yadra mikrokontrollera na bazovom matrichnom kristalle [Experience in self-timed microcontroller core design on basic gate-array]. Nano- i mikrosistemnaya tekhnika [Nano- and Microsystems Technology] 5:29-36. EDN: IAGLLN.
- Hennessy, J.L., and D.A. Patterson. 2019. Computer architecture: A quantitative approach. 6th ed. San Mateo, CA: Morgan Kaufmann. 936 p.
- Harris, D., and S. L. Harris. 2013. Digital design and computer architecture. Elsevier. 690 p.
- Stepchenkov, Yu. A., Yu. G. Diachenko, N. V. Morozov, D.Yu. Stepchenkov, and
D. Yu. Diachenko. 2024. Formalizatsiya sinteza samosinkhronnykh schetchikov [Selftimed counter synthesis formalization]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 34(2):67-83. doi: 10.14357/08696527240205. EDN: KDIEOJ.
- Yosys open synthesis suite. Available at: https://yosyshq.net/yosys (accessed August 31, 2024).
- Stepchenkov, Yu. A., D. V. Khilko, Yu. G. Diachenko, N. V. Morozov, D.Yu. Stepchenkov, and G. A. Orlov. 2024. Metodika desinkhronizatsii pri sinteze samosinkhron- nykh skhem [Desynchronization methodology at self-timed circuit synthesis]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 34(1):33-43. doi: 10.14357/08696527240103. EDN: XGZCWU.
- Fant, K. M., and S. A. Brandt. 1997. NULL convention logic. Maitland, FL: Theseus Logic Inc. Technical Report. 40 p.
- Fant, K. M. 2005. Logically determined design: Clockless system design with NULL convention logic. New York, NY: John Wiley. 292 p.
- Smith, S. C., and Di Jia. 2009. Designing asynchronous circuits using null convention logic (NCL). Synthesis Lectures Digital Circuits Systems 4(1):61{73.
- Sokolov, I. A., Yu. A. Stepchenkov, S.G. Bobkov, V. N. Zakharov, Yu. G. Diachenko, Yu. V. Rozhdestvenskiy, and A. V. Surkov. 2014. Bazis realizatsii super-EVM eksaflopsnogo klassa [Implementation basis of exaflops class supercomputer]. Informati- ka i ee Primeneniya — Inform. Appl. 8(1):45{70. doi: 10.14357/19922264140106. EDN: RYYFGD.
- Stepchenkov, Yu. A., D.Yu. Stepchenkov, Yu. G. Diachenko, N. V. Morozov, and L. P. Plekhanov. 2023. Zamena sinkhronnykh triggerov samosinkhronnymi analogami v protsesse desinkhronizatsii skhemy [Replacing synchronous triggers with self-timed counterparts during circuit desynchronization]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 33(4):4{15. doi: 10.14357/08696527230401. EDN: VPLSHI.
- Rogdestvenski, Y. V., N. V. Morozov, and A. V. Rozhdestvenskene. 2010. Podsistema sobytiynogo analiza samosinkhronnyh skhem ASPEKT [ASPECT: A suite of self-timed event-driven analysis]. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem [Problems of the perspectiv
[+] About this article
Title
SELF-TIMED UP COUNTER IMPLEMENTATION
Journal
Systems and Means of Informatics
Volume 34, Issue 3, pp 123-135
Cover Date
2024-10-30
DOI
10.14357/08696527240309
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuit; binary counter; indication; preset; hardware complexity; performance; self-timed analysis
Authors
Yu. A. Stepchenkov , Yu. G. Diachenko , N. V. Morozov , D. Yu. Stepchenkov , and D. Yu. Diachenko
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|