Systems and Means of Informatics
2024, Volume 34, Issue 3, pp 35-47
ANALYSIS OF APPROACHES TO PROBLEM STRUCTURE IDENTIFICATION IN HYBRID INTELLIGENT MULTIAGENT SYSTEMS
- S. V. Listopad
- I. A. Kirikov
Abstract
The complexity of automatic solution of practical problems is largely due to their weak formalization and sometimes, the absence of a clear statement at the time of their occurrence. As a result, significant time and labor costs are required for formulation, identification of the composition and structure of the problem, selection or development of methods relevant to its parts, as well as their synthesis. The paper considers the concept of the problem and develops its macro- and microlevel models, an analysis of the methods of automatic and automated identification of its structure is performed for their possible use in hybrid and synergetic artificial intelligence systems, in particular, hybrid intelligent multiagent systems for solving weakly formalized problems.
[+] References (32)
- Kirikov, I. A. , A.V. Kolesnikov, and S. V. Listopad. 2017. Komp’yuternaya model’ sinergii kollektivnogo prinyatiya resheniy [Computer model of synergy of team decision-making]. Informatika i ee Primeneniya — Inform. Appl. 11(3):34-41. doi: 10.14357/19922264170304. EDN: ZGIGFJ.
- Kolesnikov, A. V., and S. V. Listopad. 2019. Protokol geterogennogo myshleniya gibridnoy intellektual’noy mnogoagentnoy sistemy dlya resheniya problemy vosstanovleniya raspredelitel’noy elektroseti [Heterogeneous thinking protocol of recovery problem]. Informatika i ee Primeneniya — Inform. Appl. 13(2):76-82. doi: 10.14357/19922264190211. EDN: MDLXEF.
- Rumovskaya, S. B., A. V. Kolesnikov, and A. A. Litvin. 2019. Vizual’nyy metayazyk opisaniya resheniya diagnosticheskikh problem [Visual metalanguage for description of solution of diagnostic problems]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 29(4):39-49.doi: 10.14357/08696527190404.EDN: XVDQLJ.
- Spiridonov, V.F. 2006. Psikhologiya myshleniya: Reshenie zadach i problem [The psychology of mind: Solving of tasks and problems]. Moscow: Genesis. 319 p. EDN: RYRZQP.
- Narinyani, A. S. 2008. Inzheneriya znaniy i NE-faktory: kratkiy obzor-08 [Knowledge engineering and nonfactors: A brief overview-08]. Voprosy iskusstvennogo intellekta [Artificial Intelligence Issues] 1:61-77.
- Tarasov, V.B. 2002. Ot mnogoagentnykh sistem k intellektual’nym organizatsiyam: Filosofiya, psikhologiya, informatika [From multiagent systems to intelligent organizations: Philosophy, psychology, and informatics]. Moscow: Editorial URSS. 352 p. EDN: ZQQRPP.
- Kolesnikov, A.V. 2001. Gibridnye intellektual’nye sistemy. Teoriya i tekhnologiya razrabotki [Hybrid intelligent systems: Theory and technology of development]. St. Petersburg: SPbGTU Publs. 711 p.
- Rumovskaya, S. 2024. Revisiting the “Problem” and its structure. 4th Conference (International) on Technology Enhanced Learning in Higher Education Proceedings.
IEEE. 219-223. doi: 10.1109/TELE62556.2024.10605656.
- Tarasenko, F. P. 2010. Prikladnoy sistemnyy analiz [Applied systems analysis]. Moscow: Knorus. 224 p. EDN: QMUKWJ.
- Ivin, A. A. 1990. Iskusstvo pravil’no myslit’ [The art of thinking right]. Moscow: Prosveshchenie Publs. 240 p. EDN: TJMMWP.
- Kolesnikov, A. V., I. A. Kirikov, and S. V. Listopad. 2014. Gibridnye intellektual’nye sistemy s samoorganizatsiey: koordinatsiya, soglasovannost’, spor [Hybrid intelligent systems with self-organization: Coordination, consistency, and dispute]. Moscow: IPI RAN. 189 p.
- Sidky, A.S., R. R. Sud, S. Bhatia, and J. D. Arthur. 2002. Problem identification and decomposition within the requirements generation process. Available at: https://eprints.cs.vt.edu/archive/00000646/01 /SCLPaper_Submitted_Revised.pdf
(accessed August 29, 2024).
- Jin, Z., and L. Liu. 2006. Towards automatic problem decomposition: An ontology- based approach. Workshop (International) on Advances and Applications of Problem Frames Proceedings. New York, NY: Association for Computing Machinery. 41-48. doi: 10.1145/1138670.1138678.
- Sarkar, S., A. Dong, and J. S. Gero. 2009. A problem decomposition method for conceptual design. Research into design: Supporting multiple facets of product development. Singapore: Research Publishing Services. 59-66.
- Avtograf — universal’nyy graficheskiy redaktor, rossiyskiy analog Microsoft Visio [Autograph is a universal graphic editor, the Russian analogue of Microsoft Visio]. Available at: https://avtograf.pro (accessed August 29, 2024).
- Business Studio. Proektirovanie organizatsiy [Organization design]. Available at: https://www.businessstudio.ru (accessed August 29, 2024).
- MindOnMap. Availableat: https://www.mindonmap.com (accessed August 29, 2024).
- Koza, J. R. 1994. Genetic programming II: Automatic discovery of reusable programs. Cambridge, MA: MIT Press. 746 p.
- McIntyre, A. R. 2007. Novelty detection + coevolution = automatic problem decomposition: A framework for scalable genetic programming classifiers. Halifax: Dalhousie University. PhD Thesis. 442 p.
- Khare, V.R., X. Yao, B. Sendhoff, Y. Jin, and H. Wersing. 2005. Co-evolutionary modular neural networks for automatic problem decomposition. IEEE C. Evol. Com- putat. 3:2691{2698. doi: 10.1109/CEC.2005.1555032.
- El-Abd, M. 2010. A cooperative approach to the artificial bee colony algorithm. IEEE C. Evol. Computat. 5586007. 5 p. doi: 10.1109/CEC.2010.5586007.
- Bonami, P., D. Salvagnin, and A. Tramontani. 2020. Implementing automatic benders decomposition in a modern MIP solver. Integer programming and combinatorial optimization. Eds. D. Bienstock and G. Zambelli. Lecture notes in computer science ser. Cham: Springer. 12125:78-90. doi: 10.1007/978-3-030-45771-6_7.
- Barashov, E.B., A.V. Egorkin, D.V. Lemtyuzhnikova, and M.A. Posypkin. 2023. Analiz effektivnosti algoritma reduktsii v reshenii zadachi ob upakovke v konteynery [Efficiency of the reduction algorithms in the bin packing problem]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 33(3):61{75. doi: 10.14357/ 08696527230305. EDN: QDUAMY.
- Li, F., and Z. Xu. 2018. A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PLOS ONE 13(10):e0205445. 24 p. doi: 10.1371/journal.pone.0205445.
- Listopad, S. V., and I. A. Kirikov. 2022. Razreshenie konfliktov v gibridnykh intellektual'nykh mnogoagentnykh sistemakh [Conflict resolution in hybrid intelligent multiagent systems]. Informatika i ee Primeneniya — Inform. Appl. 16(1):54{60. doi: 10.14357/19922264220108. EDN: VHRAQC.
- Hung, S., and S.N. Givigi. 2017. A Q-learning approach to flocking with UAVs in a stochastic environment. IEEE T. Cybernetics 47(1): 186{197. doi: 10.1109/ TCYB.2015.2509646.
- Ortiz, S. 2023. What is Auto-GPT? Everything to know about the next powerful AI tool. Available at: https://www.zdnet.com/article/what-is-auto-gpt-everything- to-know-about-the-next-powerful-ai-tool (accessed August 29, 2024).
- Xiao, H. 2023. Auto-GPT unmasked: The hype and hard truths of its production pitfalls. Available at: https://jina.ai/news/auto-gpt-unmasked-hype-hard-truths- production-pitfalls (accessed August 29, 2024).
- Egorova, A. Yu., I. M. Zatsman, and V. O. Romanenko. 2023. Mashinnyy perevod s pomoshch'yu ChatGPT: monitoring vosproizvodimosti rezul'tatov [Machine translation by ChatGPT: Monitoring of outcome reproducibility]. Sistemy i Sredstva Informatiki — Systems and Means of Informatics 33(3): 117{128. doi: 10.14357/ 08696527230310. EDN: LTOWWN.
- Huang, W., F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter. 2024. Inner monologue: Embodied reasoning through planning with language models. Cornell University. 25 p. Available at: https://arxiv.org/abs/2207.05608 (accessed August 29, 2024).
- Park, J.S., J. O’Brien, C.J. Cai, M.R. Morris, P. Liang, and M. S. Bernstein. 2023. Generative agents: Interactive simulacra of human behavior. 36th Annual ACM Symposium on User Interface Software and Technology Proceedings. New York, NY: Association for Computing Machinery. Art. 2. 22 p.
- Kolesnikov, A. V., S. V. Listopad, A. S. Denisova, and A. E. Kolodin. 2017. Rolevye vizual’nye modeli funktsional’noy gibridnoy intellektual’noy sistemy s geterogennym vizual’nym polem [Role visual models of the functional hybrid intelligent system with the heterogeneous visual field]. Vestnik Baltiyskogo federal’nogo un-ta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki [Vestnik IKBFU. Physics, Mathematics, and Technology] 4:33{52. EDN: YLZWJG.
[+] About this article
Title
ANALYSIS OF APPROACHES TO PROBLEM STRUCTURE IDENTIFICATION IN HYBRID INTELLIGENT MULTIAGENT SYSTEMS
Journal
Systems and Means of Informatics
Volume 34, Issue 3, pp 35-47
Cover Date
2024-10-30
DOI
10.14357/08696527240304
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
problem; complex task; decomposition; reduction; team of specialists; hybrid intelligent multiagent system
Authors
S. V. Listopad and I. A. Kirikov
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|