Systems and Means of Informatics
2024, Volume 34, Issue 2, pp 107-122
INTELLIGENT DECISION SUPPORT SYSTEMS IN MEDICINE: CONCEPT, PROBLEMS, AND APPROACHES TO THE DEVELOPMENT
Abstract
Ideas about an object and a process as a heterogeneous integral system are not completed in a theory and have not become a world picture of highly professional specialists in the heterogeneous problematic environment of diagnostics and prognosis in medicine, technology, etc. Decision-making under conditions of limited resources, ambiguity in assessing the situation, and a large volume and variety of processed information about an object is accompanied by serious errors and risks. Decision-making virtualization technologies are needed. The paper discusses the concept of intelligent decision support systems in medicine, features and problems of the subject area, and approaches to the development.
[+] References (42)
- S vrachebnoy oshibkoy v Rossii stalkivaetsya kazhdyy pyatyy patsient [Every fifth patient in Russia faces a medical error]. Available at: https://www.medikforum.ru/ medicine/77161-s-vrachebnoy-oshibkoy-v-rossii-stalkivaetsya-kazhdyy-pyatyy-pacient. html (accessed April 17, 2024).
- Minzdrav nazval ezhegodnoe kolichestvo oslozhneniy ot vrachebnykh oshibok [The Ministry of Health named the annual number of complications from medical errors]. Available at: https://www.rbc.ru/rbcfreenews/ 5e3e9fc09a79473ae7c214a6?from=copy (accessed April 17, 2024).
- Furman, N. L. 2011. Razrabotka sistem informatsionno-analiticheskoy podderzhki prinyatiya resheniy [Development of systems for information and analytical support for decision making]. Tekhnologii informatizatsii i upravleniya [Technologies of Information and Control]. Minsk: BGU. 2:80{85.
- Vagin, V.N., and A. P. Eremeev. 2001. Some basic principles of design of intelligent systems for supporting real-time decision making. J. Comput. Sys. Sc. Int. 40(6):953{ 961. EDN: LGMXGB.
- Gusev, A. V., and T. V. Zarubina. 2017. Podderzhka prinyatiya vrachebnykh resheniy v meditsinskikh informatsionnykh sistemakh meditsinskoy organizatsii [Clinical decisions support in medical information systems of a medical organization]. Vrach i informatsionnye tekhnologii [Medical Doctor and IT] 2:60{72. EDN: YSZMEL.
- Rebrova, O. Yu. 2020. Zhiznennyy tsikl sistem podderzhki prinyatiya vrachebnykh resheniy kak meditsinskikh tekhnologiy [Life cycle of decision support systems as medical technologies]. Vrach i informatsionnye tekhnologii [Medical Doctor and IT] 1:27{37. doi: 10.37690/1811-0193-2020-1-27-37.EDN: CVANJA.
- Kobrinskiy, B. A. 2020. Sistemy podderzhki prinyatiya vrachebnykh resheniy: istoriya i sovremennye resheniya [Clinical decision support systems in advanced qualification: History and modern trends]. Metodologiya i tekhnologiya nepreryvnogo profes- sional'nogo obrazovaniya [Methodology and Technology of Continuous Professional Education] 4(4):22{38. doi: 10.24075/MTCPE.2020.022. EDN: LWVTZN.
- Kobrinskiy, B.A. 2021. Iskusstvennyy intellekt v meditsine: sostoyanie i goryachie tochki [Artificial intelligence in medicine: Status and hot spots]. XIX Natsional'naya konf. po iskusstvennomu intellektu s mezhdunarodnym uchastiem. Tr. konf. [19th National Conference on Artificial Intelligence with International Participation Collection of Works]. Eds. V. V. Borisov and B. A. Kobrinskiy. Rostov-on-Don; Taganrog: YuFU. 13{29.
- Malykh, V. L. 2019. Sistemy podderzhki prinyatiya resheniy v meditsine [Decision support systems in medicine]. Programmnye sistemy: teoriya i prilozheniya [Program Systems: Theory and Applications] 10(2): 155-184. doi: 10.25209/2079-3316-2019- 10-2-155-184. EDN: SECLOM.
- Larina, V.N., I.V. Samorodskaya, K.V. Glibko, et al. 2019. Kompleksnaya patologiya: terminologiya, otsenka tyazhesti sostoyaniya patsientov i vozmozhnyy podkhod k ikh vedeniyu [Complex pathology: Terminology, assessment of the severity of patient ' s condition and possible approach to the management of patients]. Klinicheskaya gerontologiya [Clinical Gerontology] 25(1 -2):49-57. doi: 10.26347/1607-2499201901- 02049-057. EDN: YXZNZR.
- Shaderkin, I. A. 2021. Slabye storony iskusstvennogo intellekta v meditsine [Weak-nesses of artificial intelligence in medicine]. Rossiyskiy zh. telemeditsiny i elektronnogo zdravookhraneniya [Russian J. Telemedicine and e-Health] 7(2):50-52. doi: 10.29188/2712-9217-2021-7-2-50-52. EDN: JNVMQF.
- Goldina, T. A., V.A. Burmistrov, I.V. Efimenko, and V.F. Khoroshevskiy. 2021. Iskusstvennyy intellekt v zdravookhranenii: Real World Data i Patient Voice - gotovy li my k novym realiyam? [Artificial intelligence in healthcare: Real World Data and Patient Voice - are we ready for new realities?]. Meditsinskie tekhnologii. Otsenka i vybor [Medical Technologies. Assessment and Choice] 43(2):22{31. doi: 10.17116/medtech20214302122. EDN: GDCZFH.
- Gusev, A.V., E. M. Astapenko, I. V. Ivanov, et al. 2022. Printsipy formirovaniya doveriya k sistemam iskusstvennogo intellekta dlya sfery zdravookhraneniya [Principles for building confidence in artificial intelligence systems for healthcare]. Vestnik Roszdravnadzora 2:25{33. EDN: BSMOFV.
- Sharova, D.E., S.V. Garbuk, and Yu. A. Vasilyev. 2023. Sistemy iskusstvennogo intellekta v klinicheskoy meditsine. Pervaya v mire seriya natsional'nykh standartov [Artificial intelligence systems in clinical medicine. The world's first series of national standards]. Standarty i kachestvo [Standards and Quality] 1:46{51. doi: 10.35400/0038-9692-2023-1-304-22. EDN: SNMGQA.
- Imoize, A. L., J. Hemanth, D.-T. Do, and S.N. Sur, eds. 2022. Explainable artificial intelligence in medical decision support systems. The Institution of Engineering and Technology. 545 p. doi: 10.1049/PBHE050E.
- Raval, M. S., M. Roy, T. Kaya, and R. Kapdi, eds. 2023. Explainable AI in healthcare: Unboxing machine learning for biomedicine. New York, NY: Chapman and Hall/CRC. 328 p. doi: 10.1201/9781003333425.
- Jena, O. P., M. Panda, and U. Kose, eds. 2024. Medical data analysis and processing using explainable artificial intelligence. Boca Raton, CA: CRC Press. 269 p. doi: 10.1201/9781003257721.
- Khasanov, A. G., D. G. Shaybakov, S. V. Zhernakov, et al. 2020. Neyronnye seti dlya prognozirovaniya dinamiki razvitiya zabolevaniy [Neural networks in forecasting disease dynamics]. Kreativnaya khirurgiya i onkologiya [Creative Surgery and Oncology] 10(3):198{204. doi: 10.24060/2076-3093-2020-10-3-198-204. EDN: DZNXJA.
- Kui, B., J. Pinter, R. Molontay, et al. EASY-APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis. Clinical Translational Medicine 12(6):e842. 13 p. doi: 10.1002/ctm2.842.
- Thapa, R., Z. Iqbal, A. Garikipati, et al. 2022. Early prediction of severe acute pancreatitis using machine learning. Pancreatology 22(1):43{50. doi: 10.1016/ j.pan.2021.10.003.
- Yin, M., R. Zhang, Z. Zhou, et al. 2022. Automated machine learning for the early prediction of the severity of acute pancreatitis in hospitals. Front. Cell. Infect. Mi. 12:886935. 11 p. doi: 10.3389/fcimb.2022.886935.
- Liu, L., R. Zhang, D. Shi, R. Li, Q. Wang, Y. Feng, F. Lu, Y. Zong, and X. Xu. 2023. Automated machine learning to predict the difficulty for endoscopic resection of gastric gastrointestinal stromal tumor. Frontiers Oncology 13:1190987. 10 p. doi: 10.3389/fonc.2023.1190987.
- Yastremskiy, A.P., S.D. Zakharov, N. E. Kuznetsova, et al. 2023. Prognozirovanie razvitiya parafaringeal'nogo abstsessa u lits, prozhivayushchikh v usloviyakh sibirskogo regiona, s pomoshch'yu logisticheskoy regressii [Predicting the development of parapharyngeal abscess in people living in the siberian region using logistic regression]. Universitetskaya meditsina Urala [University Medicine of the Urals] 9(2):24{28. doi: 10.36361 /24129445_2023_9_2_24. EDN: SVVKYR.
- Morozov, S.P., A.V. Vladzimirskiy, N. V. Ledikhova, et al. 2018. Otsenka diagnosticheskoy tochnosti sistemy skrininga tuberkuleza legkikh na osnove iskusstvennogo intellekta [Evaluation of diagnostic accuracy of the system for pulmonary tuberculosis screening based on artificial neural networks]. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases] 96(8):42M9. doi: 10.21292/2075-1230-2018-96-8-42-49. EDN: XYNQEP.
- Cho, H., J. G. Lee, S. J. Kang, et al. 2019. Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesion. J. Am. Heart Assoc. 8(4):e011685. 18 p. doi: 10.1161/JAHA.118.011685.
- Tao, X., X. Zhou, X. Xu, and D. A. Xiong. 2022. Lightweight network for accurate coronary artery segmentation using X-ray angiograms. Frontiers Public Health 10:892418. 16 p. doi: 10.3389/fpubh.2022.892418.
- Gusev, A. V., D. V. Gavrilov, I.N. Korsakov, et al. 2019. Perspektivy ispol'zovaniya metodov mashinnogo obucheniya dlya predskazaniya serdechno-sosudistykh zabolevaniy [Prospects for the use of machine learning methods for predicting cardiovascular disease]. Vrach i informatsionnye tekhnologii [Medical Doctor and IT] 3:41 {47. EDN: KKDZXQ.
- Penzin, O.V. 2020. Prognosticheskaya model' dlya otsenki riska razvitiya mielo- toksicheskikh oslozhneniy khimioterapevticheskogo lecheniya [Predictive model for assessing the risk of developing myelotoxic complications of chemotherapy treatment]. Moscow. PhD Thesis. 168 p. EDN: AUFLLJ.
- Lopez, B., F. Torrent-Fontbona, R. Vinas, and J. M. Fernandez-Real. 2018. Single nucleotide polymorphism relevance learning with random forests for type 2 diabetes risk prediction. Artif. Intell. Med. 85:43M9. doi: 10.1016/j.artmed.2017.09.005.
- Moazemi, S., S. Vahdati, J. Li, et al. 2023. Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review. Front. Med. | Prc. 10:1109411. 18 p. doi: 10.3389/fmed.2023.1109411.
- Khalfallah, H. B., M. Jelassi, J. Demongeot, and N. B. B. Saoud. 2023. Decision support systems in healthcare: Systematic review, meta-analysis and prediction, with example of COVID-19. AIMS Bioengineering 10(1):27{52. doi: 10.3934/bioeng.2023004.
- Kovalev, R.I., V.V. Gribova, and D.B. Okun'. 2023. Ontologiya predstavleniya znaniy o naznachenii personifitsirovannogo lecheniya [Ontology of knowledge representation about the prescribed personalized treatment]. Ontologiya proektirovaniya [Ontology of Designing] 13(2):192{203. doi: 10.18287/2223-9537-2023-13-2-192- 203. EDN: ZIJWLZ.
- Gribova, V. V., A. S. Kleshchev, F. M. Moskalenko, etal. 2018. Oblachnaya platforma IACPaaS dlya razrabotki obolochek intellektual'nykh servisov: sostoyanie i perspektivy razvitiya [IACPaaS cloud platform for the development of intelligent service shells: Current state and future evolution]. Programmnye produkty i sistemy [Software & Systems] 31(3):527{536. doi: 10.15827/0236- 235X.123.527-536.
- Osmolovskiy, I. S., and T.V. Zarubina. 2023. Razrabotka i aprobatsiya prototipa ekspertnoy sistemy dlya diagnostiki podagry [Developing and testing a prototype expert system for gout diagnosis]. Sotsial'nye aspekty zdorov'ya naseleniya [Social Aspects of Population Health] 69(4):15. 24 p. doi: 10.21045/2071-5021-2023-69-4-15. EDN: OFVRSI.
- Okikiola, F. M., E. E. Aigbokhan, A. M. Mustapha, et al. 2019. Design and implementation of a fuzzy expert system for diagnosing breast cancer. J. Advances Mathematics Computer Science 32(1):1M4. doi: 10.9734/jamcs/2019/v32i130137.
- Thanathornwong, B. 2018. Bayesian-based decision support system for assessing the needs for orthodontic treatment. Healthcare Informatics Research 24(1):22{28. doi:
10.4258/hir.2018.24.1.22.
- Brown, D., A. Aldea, C. Martin, and I. Bayley. 2018. Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support. Artif. Intell. Med. 85:28{42. doi: 10.1016/j.artmed.2017.09.007.
- Ozerov, V. A., andYu. G. Rudanov. 2020. Sistema podderzhki prinyatiya vrachebnykh resheniy [Medical decision support system]. Sistemnyy analiz v proektirovanii i uprav- lenii: Sb. nauch. tr. XXIV Mezhdunar. nauchnoy i uchebno-prakticheskoy konf. [24th Scientific and Educational-Practical Conference (International) Proceedings]. Saint Petersburg: Politekh-Press. 3:260{272.
- Shesternikova, O.P., V. K. Finn, L. V. Vinokurova, et al. 2019. An intelligent system for diagnostics of pancreatic diseases. Automatic Documentation Mathematical Linguistics 53(5):288{294. doi: 10.3103/S000510551905008X. EDN: OWVGBW.
- Samigulina, G., and Z. Samigulina. 2020. Ontological model of multi-agent smart- system for predicting drug properties based on modified algorithms of artificial immune systems. Theor. Biol. Med. Model. 17(1):12. 22p. doi: 10.1186/s12976-020-00130-x.
- Rumovskaya, S. B., A. V. Kolesnikov, and I. A. Kirikov. 2019. Modeling of collective decisions by the virtual council. Scientific Technical Information Processing 46(5):356{ 365. doi: 10.3103/S0147688219050083.
- Badnjevic, A., L. Gurbeta, and E. Custovic. 2018. An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings. Sci. Rep. | U.K. 8(1): 11645. 9 p. doi: 10.1038/s41598-018-30116-2.
[+] About this article
Title
INTELLIGENT DECISION SUPPORT SYSTEMS IN MEDICINE: CONCEPT, PROBLEMS, AND APPROACHES TO THE DEVELOPMENT
Journal
Systems and Means of Informatics
Volume 34, Issue 2, pp 107-122
Cover Date
2024-05-20
DOI
10.14357/08696527240208
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
intelligent decision support system; medicine and healthcare; development problems; development approaches
Authors
S. B. Rumovskaya
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|