Systems and Means of Informatics
2024, Volume 34, Issue 2, pp 21-39
NON STATIONARY STOCHASTIC PROCESS MODELING BY CANONICAL EXPANSION AND WAVELET NEUTRAL NETWORK
- I. N. Sinitsyn
- V. I. Sinitsyn
- E. R. Korepanov
- T. D. Konashenkova
Abstract
For scalar stochastic processes (StP) at finite time intervals and their canonical expansions (CE), a technology based on wavelet neural networks (WNN) is constructed. For WNN learning, the method of steepest descent was used. The three-layer WNN architecture is presented. The activation functions of the latent layer are based on chosen wavelet basis with general compact carrier.
For StP covariance function, a special WNN algorithm of CE construction is developed. The covariance function CE corresponds to CE StP in the form of linear combination of wavelet basis with zero mathematical expectations and variances defined by the suggested algorithm. A numerical example illustrates CE WNN preference with wavelet CE.
[+] References (19)
- Pugachev, V. S. 1962. Teoriya sluchaynykh funktsiy i ee primenenie k zadacham avtomaticheskogo upravleniya [Theory of random functions and its application to automatic control problems]. Moscow: Fizmatgiz. 884 p.
- Sinitsyn, I.N. 2009. Kanonicheskie predstavleniya sluchaynykh funktsiy i ikh primenenie v zadachakh komp'yuternoy podderzhki nauchnykh issledovaniy [Canonical expansions of random functions and their applications in computer aided support]. Moscow: TORUS PRESS. 768 p.
- Sinitsyn, I. N. 2023. Kanonicheskie predstavleniya sluchaynykh funktsiy. Teoriya i primeneniya [Canonical expansions of random functions. Theory and applications]. 2nd ed. Moscow: TORUS PRESS. 816 p.
- Sinitsyn, I. N. 2023. Developing the theory of stochastic canonic expansions. Pattern Recognition Image Analysis 33(4):862-887. doi: 10.1134/S1054661823040429.
- Marchenko, B. G. 1973. Metod stokhasticheskikh integral'nykh predstavleniy i ego prilozheniya v radiotekhnike [Method of stochastic integral representations and its applications in radio engineering]. Kiev: Naukova dumka. 191 p.
- Meyer, Y. 1989. Analysis at Urbana. Vol. 1. Analysis in function spaces. Cambridge, U.K.: Cambridge University Press. 436 p.
- Mallat, S. G. 1989. Multiresolution approximations and wavelet orthonormal bases of L2(R). T. Am. Math. Soc. 315(1):69{87. doi: 10.2307/2001373.
- Rhif, M., A. Ben Abbes, I. R. Farah, B. Martinez, and Y. Sang. 2019. Wavelet transform application for/in non-stationary time-series analysis: A review. Appl. Sci. 9(7):1345. 22 p. doi: 10.3390/app9071345.
- Sinitsyn, I. N., V. I. Sinitsyn, E. R. Korepanov, and T. D. Konashenkova. 2023. Dopolnenie \Sintez nestatsionarnykh sistem metodom veyvlet kanonicheskikh razlo- zheniy"] [Appendix \Synthesis of nonstationary Systems by wavelet canonical expan-sions"]. Sinitsyn, I. N. Kanonicheskie predstavleniya sluchaynykh funktsiy. Teoriya i primeneniya [Canonical expansions of random functions. Theory and applications]. 2nd ed. Moscow: TORUS PRESS. 752{807.
- Daubechies, I. 1992. Ten lectures on wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics. 352 p.
- Sinitsyn, I.N., I.V. Sergeev, E.R. Korepanov, and T.D. Konashenkova. 2017. Instrumental'noe programmnoe obespechenie analiza i sinteza stokhasticheskikh sistem vysokoy dostupnosti (IV) [Software tools for analysis and synthesis of stochastic systems with high availability (IV)]. Sistemy vysokoy dostupnosti [Highly Available Systems] 13(3):55{69. EDN: ZSQHLR.
- Sinitsyn, I., V. Sinitsyn, E. Korepanov, and T. Konashenkova. 2022. Bayes synthesis of linear nonstationary stochastic systems by wavelet canonical expansions. Mathematics 10(9): 1517. 14 p. doi: 10.3390/math10091517.
- Sinitsyn, I.N., V. I. Sinitsyn, E.R. Korepanov, and T.D. Konashenkova. 2023. Instrumental'noe programmnoe obespechenie analiza i sinteza stokhasticheskikh sistem vysokoy dostupnosti (XVII) [Software tools for analysis and synthesis of stochastic systems with high availability (XVII)]. Sistemy vysokoy dostupnosti [Highly Available Systems] 19(2):5{24. doi: 10.18127/j20729472-202302-01. EDN: PCUHWT.
- Sinitsyn, I., V. Sinitsyn, E. Korepanov, and T. Konashenkova. 2023. Synthesis of non-linear nonstationary stochastic systems by wavelet canonical expansions. Mathematics 11(9):2059. 18 p. doi: 10.3390/math11092059.
- Sinitsyn, I.N., V. I. Sinitsyn, E.R. Korepanov, and T.D. Konashenkova. 2023. Instrumental'noe programmnoe obespechenie analiza i sinteza stokhasticheskikh sistem vysokoy dostupnosti (XVIII) [Software tools for analysis and synthesis of stochastic systems with high availability (XVIII)]. Sistemy vysokoy dostupnosti [Highly Available Systems] 19(3):18{34. doi: 10.18127/j20729472-202303-02.EDN: SQPRDO.
- Sinitsyn, I.N., V. I. Sinitsyn, E. R. Korepanov, and T. D. Konashenkova. 2023. Sintez optimal'nykh po funktsional'nym beyesovym kriteriyam stokhasticheskikh sistem metodom veyvlet-kanonicheskikh razlozheniy [Methodological support of functional Bayes synthesis of stochastic systems based on wavelet canonical expansions]. Sis- temy vysokoy dostupnosti [Highly Available Systems] 19(4):37{50. doi: 10.18127/ j20729472-202304-03. EDN: WYQSQT.
- Haykin, S. 1999. Neural networks. A comprehensive foundation. 2nded. Prentice-Hall of India Pvt. Ltd. 842 p.
- Terekhov, S.A. 2001. Veyvlety i neyronnye seti [Wavelets and neural networks]. Nauchnaya sessiya MIFI-2001: III Vseross. nauchn.-tekhn. konf. "Neyroinformatika- 2001": lektsii po neyroinformatike [Scientific session MEPhI-2001: 3rd All-Russian
Scientific and Technical Conference "Neuroinformatics-2001": Lectures on neuroinformatics]. Moscow: MIFI. 142-181.
- Veitch, D. 2005. Wavelet neural networks and their application in the study of dynamical system. Networks 1(8):313-320.
[+] About this article
Title
NON STATIONARY STOCHASTIC PROCESS MODELING BY CANONICAL EXPANSION AND WAVELET NEUTRAL NETWORK
Journal
Systems and Means of Informatics
Volume 34, Issue 2, pp 21-39
Cover Date
2024-05-20
DOI
10.14357/08696527240202
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
canonical expansion; covariance function; modeling; stochastic process; wavelet; wavelet neural network
Authors
I. N. Sinitsyn , V. I. Sinitsyn , E. R. Korepanov , and T. D. Konashenkova
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|