Systems and Means of Informatics
2024, Volume 34, Issue 1, pp pp 57-69
MAPPING OF THE KHABAROVSK REGION ARABLE LANDS BY MACHINE LEARNING USING SENTINEL-2 IMAGES
- I. O. Prokhorets
- A. S. Stepanov
Abstract
Automated classification of arable lands using machine learning methods is one of the most important tasks in the transition to digital agriculture.
The classification of arable lands in the Khabarovsk Region was carried out using random forest (RF), minimum distance (MD), and K-means clustering methods based on Sentinel-2 images for July, August, September, and October 2022. The values of spectral bands, EVI (Enhanced Vegetation Index), and NDVI (Normalized Difference Vegetation Index) were considered as input data. Based on the results of statistical processing, it was found that the RF method demonstrated the greatest stability when changing the date of shooting and the type of input data. The accuracy of recognition of arable lands in the Khabarovsk Region in 2022 was 92.5% when using NDVI values calculated from the September Sentinel-2 image in the classifier. The proposed approach can be used for automated classification and subsequent mapping with expert correction of arable lands in the southern part of the Far East.
[+] References (15)
- Vedomstvennyy proekt "Tsifrovoe sel'skoe khozyaystvo" [Departmental project "Digital Agriculture"]. 2019. Moscow: Rosinformagrotekh. 48 p. Available at: https:// rosinformagrotech.ru/data/elektronnye-kopii-izdanij/normativnye-dokumenty- spravochniki-katalogi-i-dr/send/66-normativnye-dokumenty-spravochniki-katalogi / 1346-vedomstvennyj-proekt-tsifrovoe-selskoe-khozyajstvo-2019 (accessed February 29, 2024).
- Budzko, V.I., and V.I. Medennikov. 2023. Usloviya rezul'tativnogo primeneniya tekhnologiy iskusstvennogo intellekta v agropromyshlennom komplekse EAES [Conditions for the effective application of artificial intelligence technologies in the agroindustrial complex of the EAEU]. Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk [Proceedings of the Institute for Systems Analysis of the Russian Academy of Sciences] 73(1): 148-158. doi: 10.14357/20790279230117. EDN: YDJZZP.
- Kiryushin, V.I., A. L. Ivanov, I. S. Kozubenko, and I. Yu. Savin. 2018. Tsifrovoe zemledelie [Digital farming]. Vestnik rossiyskoy sel'skokhozyaystvennoy nauki [Vestnik of the Russian Agricultural Science] 5:4-9. doi: 10.30850/vrsn/2018/5/4-9. EDN: YLEQTR.
- Villa-Henriksen, A., G. Edwards, L. Pesonen, O. Green, and C. Sprensen. 2020. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 191:60-84. doi: 10.1016/j.biosystemseng.2019.12.013.
- Eltoshkina, N. V. 2022. Geoinformatsionnoe kartografirovanie zemel' sel'skokhozyaystvennogo naznacheniya [Geoinformation mapping of agricultural land]. Mos- kovskiy ekonomicheskiy zh. [Moscow Economic J.] 7(3):31-45. doi: 10.55186/ 2413046X_2022_7-3-142. EDN: ZXMGSO.
- Studenkova, N. A., N. I. Dobrotvorskaya, E. I. Avrunev, M. V. Kozina, and V. P. Pyat- kin. 2021. Aktual'nye voprosy inventarizatsii i kadastrovogo ucheta zemel' sel'skokho- zyaystvennogo naznacheniya [Current issues of inventory and cadastral registration of agricultural land]. Vestnik SGUGiT [Vestnik of SSUGT] 26(6):140-149. doi: 10.33764/2411-1759-2021-26-6-140-149.
- Trofimov, I. A., L. S. Trofimova, E.P. Yakovleva, A. A. Shpedt, and T.A. Aseeva. 2022. Agrolandshaftno-ekologicheskoe rayonirovanie - osnova ustoychivogo razvitiya sel'skogo khozyaystva Vostochnoy Sibiri i Dal'nego Vostoka [Agro-landscape and ecological zoning is the basis for sustainable development of agriculture in Eastern Siberia and the Far East]. Biosfera [Biosfera] 14(3): 193-199. doi: 10.24855/ biosfera.v14i3.695. EDN: BFDPAX.
- Bartalev, S.A., V.A. Egorov, V. O. Zharko, E.A. Loupian, D. E. Plotnikov, S.A. Khvostikov, and N. V. Shabanov. 2016. Sputnikovoe kartografirovanie rastitel'nogo pokrova Rossii [Land cover mapping over Russia using Earth observation data]. Moscow: Russian Academy of Sciences' Space Research Institute. 208 p. EDN: YOBJAV.
- Waldner, F., D. De Abelleyra, V. Santiago, M. Zhang, B. Wu, D. Plotnikov, S. Bartalev, M. Lavreniuk, S. Skakun, N. Kussul, G. Le Maire, S. Dupuy, I. Jarvis, andP. Defourny. 2016. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 37(14):3196-3231. doi: 10.1080/01431161.2016.1194545.
- Hao, P., H. Tang, Z. Chen, Q. Meng, and Y. Kang. 2020. Early-season crop type mapping using 30-m reference time series. J. Integr. Agr. 19(7): 1897-1911. doi: 10.1016/S2095-3119(19)62812-1.
- Roy, B. 2021. Optimum machine learning algorithm selection for forecasting vegetation indices: MODIS NDVI & EVI. Remote Sensing Applications Society Environment 23:100582. 4 p. doi: 10.1016/j.rsase.2021.100582.
- Savitha, C., and R. Talari. 2023. Mapping cropland extent using Sentinel-2 datasets and machine learning algorithms for an agriculture watershed. Smart Agricultural Technology 4:100193. 10 p. doi: 10.1016/j.atech.2023.100193.
- Andrade, J., J. Cunha, J. Silva, I. Rufino, and C. Galva. 2021. Evaluating single and multi-date Landsat classifications of land-cover in a seasonally dry tropical forest. Remote Sensing Applications Society Environment 22:100515. 13 p. doi: 10.1016/ j .rsase .2021.100515.
- Ganzei, S. S., V. V. Ermoshin, and N. V. Mishina. 2010. The dynamics of land use within the Amur basin in the 20th century. Geography Natural Resources 31(1): 18-24. doi: 10.1016/j.gnr.2010.03.004.
- Shaikh, T. A., T. Rasool, and F. R. Lone. 2022. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agr. 198:107119. 29 p. doi: 10.1016/j.compag.2022.107119.
[+] About this article
Title
MAPPING OF THE KHABAROVSK REGION ARABLE LANDS BY MACHINE LEARNING USING SENTINEL-2 IMAGES
Journal
Systems and Means of Informatics
Volume 34, Issue 1, pp 57-69
Cover Date
2024-04-10
DOI
10.14357/08696527240105
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
mapping; machine learning; satellite monitoring; arable lands; classification; Khabarovsk Region
Authors
I. O. Prokhorets and A. S. Stepanov
Author Affiliations
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 65 Kim Yu Chen Str., Khabarovsk 680000, Russian Federation
Far Eastern Research Institute of Agriculture, 13 Klubnaya Str., Vostochnoe 680521, Khabarovsk Territory, Russian Federation
|