Systems and Means of Informatics
2023, Volume 33, Issue 4, pp 4-15
REPLACING SYNCHRONOUS TRIGGERS WITH SELF-TIMED COUNTERPARTS DURING CIRCUIT DESYNCHRONIZATION
- Yu. A. Stepchenkov
- D. Yu. Stepchenkov
- Yu. G. Diachenko
- N. V. Morozov
- L. P. Plekhanov
Abstract
Self-timed (ST) digital circuits have a number of advantages in comparison with synchronous counterparts and become a promising basis for the reliable computing systems implementation operating in extreme conditions.
The lack of effective tools for automated synthesis of ST circuits convenient for use by developers trained in computer-aided design of the synchronous circuits significantly hinders the introduction of ST circuits into digital circuit development practice. The approach to the ST circuit synthesis based on the transformation of the original synchronous Verilog description of the circuit operation algorithm into the ST implementation according to formalized rules in automatic mode with minimal interactive participation of the developer provides a quick ST solution with acceptable characteristics and does not require deep knowledge of self-timing from the designer. It relies on the basic principles of ST circuits design and heuristic methods for their development. One of the important and controversial stages of ST circuit design in this approach is the replacement of synchronous latches and flip-flops by their ST counterparts. For this purpose, the authors propose to use the method of tabular formalized correspondence based on a ready-made library of ST latches and flip-flops and analysis of their environment.
[+] References (21)
- Kishinevsky, M., A. Kondratyev, A. Taubin, and V. Varshavsky. 1994. Concurrent hardware: The theory and practice of self-timed design. New York, NY: J. Wiley & Sons. 368 p.
- Zakharov, V., Y. Stepchenkov, Y. Diachenko, and Y. Rogdestvenski. 2020. Selftimed circuitry retrospective. Conference (International) Engineering Technologies and Computer Science Proceedings. Moscow. 63{69. doi: 10.1109/EnT48576.2020.00018.
- Rozhdestvenskiy, Yu.V., N. V. Morozov, Yu. A. Stepchenkov, and A.V. Rozhdestvenskene. 2006. Podsistema analiza samosinkhronnykh logicheskikh skhem ASIAN [ASIAN - subsystem of analysis of self-timed logical circuits]. Problemy razrabotki perspektivnykh mikroelektronnykh sistem [Problems of developing advanced microelectronic systems]. Moscow: IPPM RAN. 158-162. EDN: LHPAHJ.
- Plekhanov, L. P. 2009. Realizatsiya funktsional'nogo metoda analiza samosinkhronnosti elektronnykh skhem [Realization of the functional methods of self-timed electronic circuits analysis]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics
19(1): 142-148. EDN: MBCMTD.
- Rozhdestvenskiy, Yu. V., N. V. Morozov, and A. V. Rozhdestvenskene. 2010. Podsistema sobytiynogo analiza samosinkhronnykh skhem ASPEKT [ASPECT - a subsystem of event analysis of self-timed circuits]. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem [Problems of developing advanced micro- and nanoelectronic systems]. Moscow: IPPM RAN. 26-31. EDN: MVWVBR.
- Bardsley, A. 1998. Balsa: An asynchronous circuit synthesis system. Manchester, U.K.: University of Manchester. Master Thesis. 162 p.
- Fuhrer, R.M., S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L. Pandlana. 1999. Minimalist: An environment for the synthesis, verification and testability of burst-mode asynchronous machines. New York, NY: Columbia University. Technical Report TRCUCS-020-99. 20 p. doi: 10.7916/D8WD4BQ9.
- Dindhuc, A., J.-B. Rigaud, A. Rezzag, A. Sirianni, J.L. Fragoso, L. Fesquet, and M. Renaudin. 2002. TIMA asynchronous synthesis tools. Communication to ACID Workshop.
- Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters. 2007. Design automation of real-life asynchronous devices and systems. Foundations Trends Electronic Design Automation 2(1): 1-133. doi:0.1561/1000000006.
- Poliakov, I., D. Sokolov, and A. Mokhov. 2007. Workcraft: A static data flow structure editing, visualisation and analysis tool. Petri nets and other models of concurrency. Eds. J. Kleijn and A. Yakovlev. Lecture notes in computer science ser. Berlin, Heidelberg: Springer. 505-514. doi: 10.1007 978-3-540-73094-1-30.
- Reese, R.B., S. C. Smith, and M.A. Thornton. 2012. Uncle - an RTL approach to asynchronous design. Symposium (International) on Asynchronous Circuits and Systems Proceedings. Piscataway, NJ: IEEE. 65-72. doi: 10.1109/ASYNC.2012.14.
- Palangpour, P. 2013. CAD tools for synthesis of sleep convention logic. Fayetteville, AR: University of Arkansas. PhD Diss. 85 p. Available at: http://scholarworks.uark. edu/etd/755 (accessed November 22, 2023).
- Sparso, J., and S. Furber 2001. Principles of asynchronous circuit design: A systems perspective. Kluwer Academic Publs. 337 p. doi: 10.1007/978-1-4757-3385-3.
- Blunno, I., and L. Lavagno. 2000. Automated synthesis of micro-pipelines from behavioral Verilog HDL. 6th Symposium (International ) on Advanced Research in Asynchronous Circuits and Systems Proceedings. Los Alamitos, CA: IEEE Computer Society Press. 84-92. doi: 10.1109/ASYNC.2000.836967.
- Andrikos, N., L. Lavagno, D. Pandini, and C. P. Sotiriou. 2007. A fully-automated desynchronization flow for synchronous circuits. 44th ACM/IEEE Design Automation Conference Proceedings. Piscataway, NJ: IEEE. 982-985.
- Zhou, R., K.-S. Chong, B.-H. Gwee, and J. S. Chang. 2011. Quasi-delay-insensitive compiler: Automatic synthesis of asynchronous circuits from verilog specifications. 54th Midwest Symposium (International ) on Circuits and Systems. Piscataway, NJ: IEEE. Art. 6026577. 4 p. doi: 10.1109/MWSCAS.2011.6026577.
- Plekhanov, L. P., A.N. Denisov, Yu. G. Diachenko, D. I. Mamonov, N. V. Morozov, and D. Yu. Stepchenkov. 2021. Realizatsiya sinteza samosinkhronnykh skhem v bazise BMK [Implementing self-timed circuits synthesis in gate array basis]. Nanoindus- triya [Nanoindustry] 14(S7):395{397. doi: 10.22184/1993-8578.2021.14.7s.395.397. EDN: TGPTHL.
- Denisov, A. N., Yu. P. Fomin, V. V. Konyakhin, and R. A. Fedorov. 2019. Biblioteka funktsional'nykh yacheek dlya proektirovaniya poluzakaznykh mikroskhem seriy 5503 i 5507 [Function cell library for the design of semicustom integrated circuits of the 5503 and 5507 series]. Moscow: Tekhnosfera. 317 p. Available at: https://www. technosphera.ru/files/book_pdf/0/book_324_977.pdf (accessed November 22, 2023).
- Yosys Open SYnthesis Suite. Available at: https://yosyshq.net/yosys (accessed October 23, 2023).
- Plekhanov, L. P. 2013. Osnovy samosinkhronnykh elektronnykh skhem [Basics of selftimed electronic circuits]. Moscow: Binom. Laboratory of Knowledge. 208 p.
- Stepchenkov, Yu. A., A.N. Denisov, Yu. G. Diachenko, et al. 2017. Biblioteka funktsional'nykh yacheek dlya proektirovaniya samosinkhronnykh poluzakaznykh BMK mikroskhem seriy 5503/5507 [Library of functional cells for designing self-timed semicustom chips of the 5503 and 5597 series]. Moscow: Tekhnosfera. Vol. 4. 376 p.
[+] About this article
Title
REPLACING SYNCHRONOUS TRIGGERS WITH SELF-TIMED COUNTERPARTS DURING CIRCUIT DESYNCHRONIZATION
Journal
Systems and Means of Informatics
Volume 33, Issue 4, pp 4-15
Cover Date
2023-12-10
DOI
10.14357/08696527230401
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuit; logic synthesis; trigger; Verilog; substitution; coincidence table
Authors
Yu. A. Stepchenkov , D. Yu. Stepchenkov , Yu. G. Diachenko , N. V. Morozov , and L. P. Plekhanov
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|