Systems and Means of Informatics
2023, Volume 33, Issue 2, pp 25-33
DEEPFAKE IMAGE DETECTION USING BISPECTRAL ANALYSIS
Abstract
As deep-fake image synthesis tools become more powerful and available, there is a growing need to develop methods for detecting generated content. The main goal of the work is to test the application of bispectral analysis as a tool for detecting images generated by artificial intelligence (AI).
It is shown that higher-order spectral correlations detected by spectral analysis are less present in natural images compared to the images generated using generative-adversarial neural networks GAN (generative adversarial network).
These correlations are probably the result of fundamental properties of the image generation process. The clustering procedure has shown encouraging results: it determines the generated images with an accuracy of 80%.
[+] References (21)
- Nightingale, S., and H. Farid. 2022. Synthetic faces are more trustworthy than real faces. J. Vision 22(14):3068. doi: 10.1167/jov.22.14.3068.
- Goodfellow, I., J. Pouget-Abadie, M. Mirza, et al. 2020. Generative adversarial networks. Commun. ACM 63(11): 139-144. doi: 10.1145/3422622.
- Matern, F., C. Riess, and M. Stamminger. 2019. Exploiting visual artifacts to expose deepfakes and face manipulations. Winter Applications of Computer Vision Workshops. IEEE. 83-92. doi: 10.1109/WACVW.2019.00020.
- Pavelyeva, E. A. 2013. Poisk sootvetstviy mezhdu klyuchevymi tochkami izobrazheniy raduzhnykh obolochek glaz s pomoshch'yu metoda proektsionnoy fazovoy korrelyatsii [The search for matches between the iris key points using Hermite projection phase- only correlation method]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 23(2):74-88. doi: 10.14357/08696527130206.
- Karras, T., S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. 2020. Analyzing and improving the image quality of StyleGAN. IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. 8110-8119.
- Durall, R., M. Keuper, F.-J. Pfreundt, and J. Keuper. 2019. Unmasking deepfakes with simple features. arXiv.org. 8 p. Available at: https://arxiv.org/abs/1911.00686 (accessed April 17, 2023).
- Frank, J., T. Eisenhofer, L. Schonherr, A. Fischer, D. Kolossa, and T. Holz. 2020. Leveraging frequency analysis for deep fake image recognition. 37th Conference (International) on Machine Learning Proceedings. 119:3247-3258.
- Dong, Ñ., A. Kumar, and E. Liu. 2022. Think twice before detecting GAN-generated fake images from their spectral domain imprints. IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. 7865-7874.
- Ng, T.T., S.F. Chang, and Q. Sun. 2004. Blind detection of photomontage using higher order statistics. Symposium (International) on Circuits and Systems. IEEE. 5:1329901. doi: 10.1109/ISCAS.2004.1329901.
- Wen, Z., D. Fraser, and A. Lambert. 2009. Bicoherence: Anew lucky region technique in anisoplanatic image restoration. Appl. Optics 48(32):6111-6119.
- Hinich, M. J., and M. A. Wolinsky. 1988. A test for aliasing using bispectral analysis. J. Am. Stat. Assoc. 83(402):499-502.doi: 10.1080/01621459.1988.10478623.
- Mendel, J. M. 1991. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. P. IEEE 79(3):278-305. doi: 10.1109/5.75086.
- NVlabs/FFHQ-dataset. Available at: https://github.com/NVlabs/ffhq-dataset (accessed April 17, 2023).
- NVlabs/StyleGAN2-dataset. Available at: https://github.com/NVlabs/stylegan2 (accessed April 17, 2023).
- High-resolution anime face dataset (512x512). Available at: https://www.kaggle.com/ datasets/subinium/highresolution-anime-face-dataset-512x512 (accessed April 17, 2023).
- GitHub - justinpinkney/awesome-pretrained-StyleGAN2-Anime-portraits-dataset. Available at: https: //github.com/justinpinkney/awesome-pretrained-stylegan2# Anime-portraits (accessed April 17, 2023).
- Silvagni, D., Ñ. Djerroud, T. Reveille, and E. Gravier. 2018. Bispectral analysis: Comparison of two windowing functions. J. Phys. Conf. Ser. 982(1):012007. doi: 10.1088/1742-6596/982/1/012007.
- Scikit-learn: Machine learning in Python. Available at: http://scikit-learn.org (accessed April 17, 2023).
- Ng, A. 2018. Machine learning yearning: Technical strategy for AI engineers, in the era of deep learning. Self-publishing. 118 p.
- Karras, T., M. Aittala, S. Laine, et al. 2021. Alias-free generative adversarial networks. Adv. Neur. In. 34:852-863.
- Alaluf, Y., O. Patashnik, Z. Wu, A. Zamir, E. Shechtman, D. Lischinski, and
D. Cohen-Or. 2023. Third time's the charm? Image and video editing with StyleGAN3. Computer vision. Eds. L. Karlinsky, T. Michaeli, and K. Nishino. Lecture notes in computer science ser. Cham: Springer. 13802:204-220. doi: 10.1007/978-3-031- 25063-7_13.
[+] About this article
Title
DEEPFAKE IMAGE DETECTION USING BISPECTRAL ANALYSIS
Journal
Systems and Means of Informatics
Volume 33, Issue 2, pp 25-33
Cover Date
2023-06-10
DOI
10.14357/08696527230203
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Al-synthesized image; polyspectral analysis; nonlinearity; machine learning algorithms
Authors
S. P. Nikitenkova
Author Affiliations
N.I. Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod 603022, Russian Federation
|