Systems and Means of Informatics
2022, Volume 32, Issue 2, pp 58-71
ANALYTICAL MODELING AND ESTIMATION OF NONSTATIONARY NORMAL PROCESSORS WITH UNSOLVED DERIVATIVES
Abstract
Methodological and algorithmic support for analytical modeling, estimation, identification, and calibration for essentially nonstationary (e.g., shock) stochastic systems with unsolved derivatives is proposed. Basic theorems are given. Special attention is paid to shock disturbances. An example is provided. Some possible generalizations are presented.
[+] References (12)
- Sinitsyn, I. N. 2017. Analiticheskoe modelirovanie shirokopolosnykh protsessov v stokhasticheskikh sistemakh, ne razreshennykh otnositel'no proizvodnykh [Analytical modeling of wide band processes in stochastic systems with unsolved derivatives]. Informatika i ee Primeneniya - Inform. Appl. 11(1): 3- 10.
- Sinitsyn, I.N. 2017. Parametricheskoe analiticheskoe modelirovanie protsessov v stokhasticheskikh sistemakh, ne razreshennykh otnositel'no proizvodnykh [Parametric analytical modeling of processes in stochastic systems that are not allowed with respect to derivatives]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics
27(1):21-45.
- Sinitsyn, I.N. 2021. Normal'nye suboptimal'nye fil'try dlya differentsial'nykh stokhasticheskikh sistem, ne razreshennykh otnositel'no proizvodnykh [Normal suboptimal filtering for differential stochastic systems with unsolved derivatives]. Informatika i ee Primeneniya - Inform. Appl. 15 (1): 3- 10.
- Sinitsyn, I. N. 2021. Analiticheskoe modelirovanie i fil'tratsiyanormal'nykh protsessov v integrodifferentsial'nykh stokhasticheskikh sistemakh, ne razreshennykh otnositel'no proizvodnykh [Analytical modeling and filtering for integrodifferential systems with unsolved derivatives]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 31 (1):31-56.
- Sinitsyn, I.N. 2021. Analytical modeling and estimation of normal processes defined by stochastic differential equations with unsolved derivatives. J. Mathematics Statistics Research 3(1): 139. 7 p. doi: 10.36266/JMSR/139.
- Sinitsyn, I.N. 2022. Normalizatsiya sistem, stokhasticheski ne razreshennykh otnositel'no proizvodnykh [Normalization of systems with stochastically unsolved derivatives]. Informatika i ee Primeneniya - Inform. Appl. 16(1 ):32-38.
- Pugachev, V. S., and I.N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, NY: J. Wiley & Sons. 549 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I.N. 2009. Kanonicheskie predstavleniya sluchaynykh funktsiy i ikh primenenie v zadachakh komp'yuternoy podderzhki nauchnykh issledovaniy [Canonical expansions of random functions and their applications in computer-aided support]. Moscow: TORUS PRESS. 768 p.
- Evlanov, L. G., and V. M. Konstantinov. 1976. Sistemy so sluchaynymi parametrami [Systems with random parameters]. Moscow: Nauka. 568 p.
- Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. 2nd ed. Moscow: Logos. 776 p.
- Sinitsyn, I.N., and A. S. Shalamov. 2019. Lektsii po teorii sistem integrirovannoy logisticheskoy podderzhki [Lectures on theory of integrated logistic support systems]. 2nd ed. Moscow: TORUS PRESS. 1072 p.
[+] About this article
Title
ANALYTICAL MODELING AND ESTIMATION OF NONSTATIONARY NORMAL PROCESSORS WITH UNSOLVED DERIVATIVES
Journal
Systems and Means of Informatics
Volume 32, Issue 2, pp 58-71
Cover Date
2022-06-10
DOI
10.14357/08696527220206
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
calibration; estimation (filtering and extrapolation); identification; Kalman and Bucy filter and estimator; shock system with unsolved derivatives; system with stochastically unsolved derivatives
Authors
I. N. Sinitsyn ,
Author Affiliations
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Moscow State Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125933, Russian Federation
|