Systems and Means of Informatics
2021, Volume 31, Issue 4, pp 144-156
UNINTERRUPTED CONNECTIVITY TIME PERFORMANCE ANALYSIS IN TERAHERTZ SYSTEMS
- V. A. Beschastnyi
- D. Yu. Ostrikova
- V. S. Shorgin
- D. A. Moltchanov
- Yu. V. Gaidamaka
Abstract
Terahertz (THz) band is considered as the main candidate for new radio access technology in sixth-generation (6G) cellular systems. Requiring large antenna arrays at base station (BS) and user equipment (UE) sides to compensate for extreme path losses, THz systems will utilize extremely directional antenna radiation patterns. As a result, the performance of these systems will be severely affected by not only blockage but also UE micromobility in hands of a user.
The negative effects of these phenomena can be alleviated by utilizing the multiconnectivity functionality that allows UE to maintain two or more links to nearby BSs and use them when the currently active link is lost. By accounting for THz specific propagation, antenna and beam searching design, the density of THz BS deployment, and multiconnectivity operation, the successful session completion probability under both types of impairments has been investigated.
The present results indicate that the gains of multiconnectivity are observed up to 5 simultaneously supported links and heavily depend on the application outage tolerance time and are mostly affected by micromobility. To improve it, one needs to ensure that the application may tolerate outage caused by beam searching time which is of the order of milliseconds.
[+] References (14)
- Polese, M., J. M. Jornet, T. Melodia, and M. Zorzi. 2020. Toward end-to-end, full-stack 6G terahertz networks. IEEE Commun. Mag. 58(11):48-54. doi: 10.1109/ MC0M.001.2000224.
- Akyildiz, I. F., and J. M. Jornet. 2016. Realizing ultra-massive mimo (1024 x 1024) communication in the (0.06-10) terahertz band. Nano Commun. Netw. 8:46-54. doi: 10.1016/j.nancom.2016.02.001.
- Petrov, V., D. Moltchanov, Y. Koucheryavy, and J. M. Jornet. 2018. The effect of small-scale mobility on terahertz band communications. 5th ACM Conference (International) on Nanoscale Computing and Communication Proceedings. New York, NY: ACM. 40. 2 p. doi: 10.1145/3233188.3242902.
- Petrov, V., D. Moltchanov, Y. Koucheryavy, and J. M. Jornet. 2020. Capacity and outage of terahertz communications with user micro-mobility and beam misalignment. IEEE T. Veh. Technol. 69(6):6822-6827.doi: 10.1109/ TVT.2020.2988600.
- 3GPP. June 2021. NR; Multi-connectivity; Overall description (Release 16). Technical Specification 37.340. Available at: https://portal.3gpp.org/desktopmodules/ Specifications/SpecificationDetails.aspx?specificationId=3198 (accessed October 12, 2021).
- Gapeyenko, M., V. Petrov, D. Moltchanov, M. R. Akdeniz, S. Andreev, N. Himayat, and Y. Koucheryavy. 2019. On the degree of multi-connectivityin 5G millimeter- wave cellular urban deployments. IEEE T. Veh. Technol. 68(2):1973-1978. doi: 10.1109/TVT.2018.2887343.
- Begishev, V., E. Sopin, D. Moltchanov, R. Pirmagomedov, A. Samuylov, S. Andreev, Y. Koucherayvy, and K. Samouylov. 2021. Performance analysis of multi-band microwave and millimeter-wave operation in 5GNR systems. IEEE T. Wirel. Commun. 20(6):3475-3490. doi: 10.1109/TWC.2021.3051027.
- Shafie, N. Y., and C. Han. 2020. Multi-connectivity for indoor terahertz communication with self and dynamic blockage. IEEE Conference (International) on Communications Proceedings. Piscataway, NJ: IEEE. Art. 9148716. 7 p. doi: 10.1109/ ICC40277.2020.9148716.
- Moltchanov, D. 2012. Distance distributions in random networks. Elsevier Ad Hoc Networks 10:1146-1166. doi: 10.1016/j.adhoc.2012.02.005.
- Begishev, V., D. Moltchanov, E. Sopin, A. Samuylov, S. Andreev, Y. Koucheryavy, and K. Samouylov. 2019. Quantifying the impact of guard capacity on session continuity in 3GPP new radio systems. IEEE T. Veh. Technol. 68(12): 12345-12359. doi: 10.1109/TVT.2019.2948702.
- Boronin, P., V. Petrov, D. Moltchanov, Y. Koucheryavy, and J. M. Jornet. 2014. Capacity and throughput analysis of nanoscale machine communication through transparency windows in the terahertz band. Nano Commun. Netw. 5(3):72-82. doi: 10.1016/j.nancom.2014.06.001.
- Cinlar, E. 1969. Markov renewal theory. Adv. Appl. Probab. 1(2):123-187. doi: 10.2307/1426216.
- Gerasimenko, M., D. Moltchanov, M. Gapeyenko, S. Andreev, and Y. Kouche- ryavy. 2019. Capacity of multiconnectivity mmWave systems with dynamic blockage and directional antennas. IEEE T. Veh. Technol. 68(4):3534-3549. doi: 10.1109/ TVT.2019.2896565.
- Gapeyenko, M., A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, M. R. Ak- deniz, E. Aryafar, N. Himayat, S. Andreev, and Y. Koucheryavy. 2017. On the temporal effects of mobile blockers in urban millimeter-wave cellular scenarios. IEEE T. Veh. Technol. 66(11):10124-10138. doi: 10.1109/TVT.2017.2754543.
[+] About this article
Title
UNINTERRUPTED CONNECTIVITY TIME PERFORMANCE ANALYSIS IN TERAHERTZ SYSTEMS
Journal
Systems and Means of Informatics
Volume 31, Issue 4, pp 144-156
Cover Date
2021-12-10
DOI
10.14357/08696527210412
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
terahertz communications; micromobility; outage; multiconnectivity; human body blockage; beam searching
Authors
V. A. Beschastnyi , D. Yu. Ostrikova , V. S. Shorgin , D. A. Moltchanov , and Yu. V. Gaidamaka ,
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Str., Moscow 117198, Russian Federation
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Tampere University, 7 Korkeakoulunkatu, Tampere 33720, Finland
|