Systems and Means of Informatics
2021, Volume 31, Issue 3, pp 36-47
INVESTIGATION OF THE PROBLEM OF CONTINUOUS PRODUCT STOCK CONTROL IN A STOCHASTIC MODEL OF REGENERATION WITH TWO OPTIMIZATION PARAMETERS
- P. V. Shnurkov
- K. A. Adamova
Abstract
The paper proposes and analyzes anew stochastic model of regeneration of continuous product stock control. The volume of stock at an arbitrary moment of time is the status of the system. The control parameters are a maximum deterministic allowable stock volume and a random time from replenishment until control - medium specific profit, an explicit analytical representation was obtained. By its structure, this indicator is a fractional linear integral functional from the distribution of a random control parameter. The integrands in the numerator and the denominator of the specified functional depend on the second deterministic control parameter. A special form of the theorem on the extremum of a fractional linear integral functional is used to solve the optimization problem. An analytical study of the main function of this functional on the global extremum was conducted. Based on this study, analytical properties of the original characteristics of the model, under which there is an optimal solution of the management task, are established and a description of this solution is obtained.
[+] References (16)
- Shnurkov, P. V., and R. V. Mel'nikov. 2006. Optimal'noe upravlenie zapasom nepreryvnogo produkta v modeli regeneratsii [Optimal control of a continuous product inventory in the regeneration model]. Obozrenie prikladnoy i promyshlennoy matemati- ki [Review of Applied and Industrial Mathematics] 13(3):434-452.
- Shnurkov, P. V., and R. V. Mel'nikov. 2008. Analysis of the problem of continuous- product inventory control under deterministic lead time. Automat. Rem. Contr. 69(10): 1734-1751.
- Mel'nikov, R. V. 2010. Issledovanie problem upravleniya zapasom v stokhasticheskoy modeli regeneratsii [Research inventory control problems in stochastic recovery model]. Moscow: MGIEM. PhD Diss. 133 p.
- Shnurkov, P. V., and E. Yu. Pimenova. 2017. Optimal'noe upravlenie zapasom nepreryvnogo produkta v skheme regeneratsii s determinirovannoy zaderzhkoy postavki
i periodom real'nogo popolneniya [Optimal inventory control of continuous product in regeneration theory with determinate delay of the delivery and the period of real replenishment]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27(4):80-94.
- Ryzhikov, Yu. I. 1963. Upravlenie zapasami [Inventory management]. Moscow: Nauka. 235 p.
- Lototskiy, V.A., and A. S. Mandel'. 1991. Modeli i metody upravleniya zapasami [Models and inventory control methods]. Moscow: Nauka. 188 p.
- Porteus, E.L. 2002. Foundations of stochastic inventory theory. Stanford, CA: Stanford Business Book. 299 p.
- Nino-Mora, J. 2006. Restless bandit marginal productivity indices, diminishing returns, and optimal control of make-to-order/make-to-stock M/G/1 queues. Math. Oper. Res. 31(1):50-84.
- Snurkov, P. V., and A. V. Ivanov. 2015. Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption. Discrete Math. 25(1):59-67.
- Shnurkov, P. V. 2016. Solution of the unconditional extremum problem for a linear- fractional integral functional on a set of probability measures. Dokl. Math. 94(2):550- 554.
- Shnurkov, P. V., A. K. Gorshenin, and V. V. Belousov. 2016. Analiticheskoe reshenie zadachi optimal'nogo upravleniya polumarkovskim protsessom s konechnym mnozhest- vom sostoyaniy [An analytic solution of the optimal control problem for a semi- Markov process with a finite set of states]. Informatika i ee Primeneniya - Inform. Appl. 10(4):72-88.
- Shnurkov, P., and K. Adamova. 2019. Solution of the unconditional extremal problem for a linear-fractional integral functional depending on the parameter. arXiv.org. 14 p. Available at: https://arxiv.org/abs/1906.05824 (accessed September 7, 2021).
- Shnurkov, P. V., and K. A. Adamova. 2020. Reshenie zadachi bezuslovnogo ekstremuma dlya drobno-lineynogo integral'nogo funktsionala, zavisyashchego ot parametra [Solution of the unconditional extremal problem for a linear-fractional integral functional depending on the parameter]. Informatika i ee Primeneniya - Inform. Appl. 14(2):98-103.
- Rykov, V.V., and D.V. Kozyrev. 2016. Osnovy teorii massovogo obsluzhivaniya [Queuing theory fundamentals]. Moscow: Infra-M. 223 p.
- Mine, H., and S. Osaki. 1970. Markovian decision processes. New York, NY: Elsevier. 142 p.
- Shnurkov, P.V., and K. A. Adamova. 2021. Prilozhenie k stat'e: Problema optimizatsii upravleniya zapasom nepreryvnogo produkta v stokhasticheskoy modeli regeneratsii pri nalichii dvukh parametrov optimizatsii [Appendix to article: The problem of optimization of continuous product stock control in a stochastic model of regeneration with two optimization parameters]. 29 p. Available at: http://www.ipiran.ru/publications/Shnurkov.docx (accessed September 7, 2021).
[+] About this article
Title
INVESTIGATION OF THE PROBLEM OF CONTINUOUS PRODUCT STOCK CONTROL IN A STOCHASTIC MODEL OF REGENERATION WITH TWO OPTIMIZATION PARAMETERS
Journal
Systems and Means of Informatics
Volume 31, Issue 3, pp 36-47
Cover Date
2021-11-10
DOI
10.14357/08696527210303
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
continuous product stock control; controlled regenerating process; linear-fractional integral functional
Authors
P. V. Shnurkov and K. A. Adamova
Author Affiliations
National Research University Higher School of Economics, 34 Tallinskaya Str., Moscow 123458, Russian Federation
Academician Pilugin Scientific-Production Center of Automatics and Instrument- Making, 1 Vvedenskogo Str., Moscow 117342, Russian Federation
|