Systems and Means of Informatics
2021, Volume 31, Issue 3, pp 18-35
SOME PROBABILITY-STATISTICAL PROPERTIES OF THE GAMMA-EXPONENTIAL DISTRIBUTION
- M. O. Vorontsov
- A. A. Kudryavtsev
- O. V. Shestakov
Abstract
Currently, much attention of researchers is paid to generalizations of well-known mathematical objects in order to obtain adequate models describing real phenomena. An important role in the applied theory of probability and mathematical statistics is played by the gamma class of distributions, which has proven to be a convenient and effective tool for modeling a lot of real processes.
The gamma class is quite wide and includes distributions that have such useful properties as, for example, infinite divisibility and stability, which makes it possible to use distributions from this class as asymptotic approximations in various limit theorems. One of the most important tasks of applied statistics is to obtain estimates of the parameters of the model distribution from the available real data. The paper considers the gamma-exponential distribution which is a generalization of the distributions from the gamma class. Estimates and asymptotic confidence intervals are given for some parameters of this distribution.
The problems of computer modeling of sample realizations from the gamma- exponential distribution and the numerical estimation of parameters for the sample are discussed. The results of the work can be widely used in the study of probabilistic models based on continuous distributions with an unbounded nonnegative support.
[+] References (27)
- Kudryavtsev, A. A. 2019. O predstavlenii gamma-eksponentsial'nogo i obobshchennogo otritsatel'nogo binomial'nogo raspredeleniy [On the representation of gamma- exponential and generalized negative binomial distributions]. Informatika i ee Prime- neniya - Inform. Appl. 13(4):78-82.
- Kudryavtsev, A. A., and A.I. Titova. 2017. Gamma-eksponentsial'naya funktsiya v bayesovskikh modelyakh massovogo obsluzhivaniya [Gamma-exponential function in Bayesian queuing models]. Informatika i ee Primeneniya - Inform. Appl. 11 (4): 104- 108.
- LeRoy, E. 1900. Sur les series divergentes et les fonctions definies par un developpement de Taylor. Ann. Fac. Sci. Toulouse 2 ser. 2(3):317-384.
- Srivastava, H. M., and Z. Tomovski. 2009. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211:198-210.
- Gorenlo, R., A. A. Kilbas, F. Mainardi, and S.V. Rogosin. 2014. Mittag-Leffler functions, related topics and applications. Berlin-Heidelberg: Springer-Verlag. 443 p.
- Kudryavtsev, A. A. 2018. Bayesovskie modeli balansa [Bayesian balance models]. Informatika i ee Primeneniya - Inform. Appl. 12(3): 18-27.
- Amoroso, L. 1925. Ricerche intorno alla curva dei redditi. Ann. Mat. Pur. Appl. 21:123-159.
- Kritsky, S.N., and M.F. Menkel. 1946. O priemakh issledovaniya sluchaynykh kolebaniy rechnogo stoka [Methods of investigation of random fluctuations of river flow]. Trudy NIU GUGMS Ser. IV [GUGMS Research Institutions Proceedings, Ser. IV] 29:3-32.
- Kritsky, S.N., and M.F. Menkel. 1948. Vybor krivykh raspredeleniya veroyatnostey dlya raschetov rechnogo stoka [Selection of probability distribution curves for river flow calculations]. Izvestiya AN SSSR. Otd. tekhn. nauk [Herald of the Russian Academy of Sciences. Technical Sciences] 6:15-21.
- Stacy, E. W. 1962. A generalization of the gamma distribution. Ann. Math. Stat. 33:1187-1192.
- Gao, G., K. Ouyang, Y. Luo, S. Liang, and S. Zhou. 2017. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images. IEEE T. Geosci. Remote 55(3):1812-1832.
- Zhou, Y., and H. Zhu. 2018. Image segmentation using a trimmed likelihood estimator in the asymmetric mixture model based on generalized gamma and Gaussian distributions. Math. Probl. Eng. 2018:3468967. 17 p. doi: 10.1155/2018/3468967.
- Iriarte, Y. A., H. Varela, H.J. Gomez, and H.W. Gomez. 2020. A gamma-type distribution with applications. Symmetry 12(5):870. 15 p. doi: 10.3390/sym12050870.
- Rivera, P. A., I. Barranco-Chamorro, D. I. Gallardo, and H.W. Gomez. 2020. Scale mixture of Rayleigh distribution. Mathematics 8(10):1842. 22 p. doi: 10.3390/math8101842.
- Borisov, V. A. 2001. Demografiya [Demography]. Moscow: NOTABENE. 272 p.
- Volgin, N. A., L. L. Rybakovskiy, N.M. Kalmykova, V.N. Arkhangel'skiy, E. I. Ivanova, O. D. Zakharova, A. E. Ivanova, M. B. Denisenko, N. P. Tikhomirov, and T. M. Tikhomirova. 2005. Demografiya [Demography]. Eds. N. A. Volgin and L. L. Rybakovskiy. Moscow: Logos. 280 p.
- Kuznetsov, S. I., and K. I. Rogozin. 2012. Spravochnik po fizike [Handbook of physics]. Tomsk: TPU. 224 p.
- Bocharov, P. P., and A. V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Shaptala, V. G., V. Yu. Radoutskiy, and V. V. Shaptala. 2010. Osnovy modelirovaniya chrezvychaynykh situatsiy [Basics of modeling of emergency situations]. Belgorod: BGTU. 166 p.
- Zdorovtsov, I. A., and V. Yu. Korolev. 2004. Osnovy teorii nadezhnosti volokonno- opticheskikh liniy peredachi zheleznodorozhnogo transporta [Fundamentals of reliability theory of fiber optic transmission lines for railway transport]. Moscow: MAKS Press. 308 p.
- Kudryavtsev, A. A., and O. V. Shestakov. 2020. Metod logarifmicheskikh momentov dlya otsenivaniya parametrov gamma-eksponentsial'nogo raspredeleniya [Method of logarithmic moments for estimating the gamma-exponential distribution parameters]. Informatika i ee Primeneniya - Inform. Appl. 14(3):49-54.
- Kudryavtsev, A. A., and O. V. Shestakov. 2021. Asymptotically normal estimators for the parameters of the gamma-exponential distribution. Mathematics 9(3):273. 13 p. doi: 10.3390/math9030273.
- Devroye, L. 1986. Non-uniform random variate generation. New York, NY: Springer- Verlag. 843 p.
- Kudryavtsev, A. A. 2019. Apriornoe obobshchennoe gamma-raspredelenie v bayesovskikh modelyakh balansa [A priori generalized gamma distribution in Bayesian balance models]. Informatika i ee Primeneniya - Inform. Appl. 13(3):27-33.
- McDonald, J. B. 1984. Some generalized functions for the size distribution of income. Econometrica 52(3):647-665.
- Vorontsov, M. O., A. A. Kudryavtsev, and S. Ya. Shorgin. 2021. Analiticheskie svoyst- va i aspekty vychisleniya gamma-eksponentsial'noy funktsii [Analytical properties and aspects of computation of the gamma-exponential function]. Sistemy i Sredstva Infor- matiki - Systems and Means of Informatics 31 (2): 106-116.
- Billingsley, P. 1977. Convergence of probability measures. New York, NY: John Wiley & Sons, Inc. 277 p.
[+] About this article
Title
SOME PROBABILITY-STATISTICAL PROPERTIES OF THE GAMMA-EXPONENTIAL DISTRIBUTION
Journal
Systems and Means of Informatics
Volume 31, Issue 3, pp 18-35
Cover Date
2021-11-10
DOI
10.14357/08696527210302
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
computer modeling; parameter estimation; gamma-exponential distribution; mixed distributions; generalized gamma distribution
Authors
M. O. Vorontsov , A. A. Kudryavtsev , and O. V. Shestakov ,
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|