Systems and Means of Informatics
2021, Volume 31, Issue 3, pp 4-17
JOINT STATIONARY DISTRIBUTION IN THE GI/M/n/infinity QUEUE WITH GENERAL RENOVATION
- T. A. Milovanova
- I. S. Zaryadov
- L. A. Meykhanadzhyan
Abstract
Multiserver queuing system with a finite number of identical servers and one queue of unlimited capacity is being considered. Customers enter the system one by one in accordance with a recurrent flow. Service times are exponentially distributed with the same parameter. General renovation mechanism is implemented in the system: a customer, whose service has been completed, upon leaving the system removes a random number of other customers from the queue according to a given probability distribution. The method is proposed for finding the joint stationary distribution of the total number of customers in the system and the time elapsed since the last arrival. Expressions (in terms of transforms) for the calculation of the transient joint distribution are presented.
[+] References (17)
- Bocharov, P. P., and I. S. Zaryadov. 2007. Statsionarnoe raspredelenie veroyatnostey v sistemakh massovogo obsluzhivaniya s obnovleniem [Queueing systems with renovation. Stationary probability distribution]. Vestnik RUDN. Ser. Matematika. Infor- matika. Fizika [Bulletin of Peoples' Friendship University of Russia. Ser. Mathematics. Information Sciences. Physics] 1-2:14-23.
- Zaryadov, I. S. 2008. Statsionarnye kharakteristiki obsluzhivaniya v sisteme G/M/n/r s obobshchennym obnovleniem [Queueing system G/M/n/r with general renovation. Stationary characteristics]. Vestnik RUDN. Ser. Matematika. Informatika. Fizika [Bulletin of Peoples' Friendship University of Russia. Ser. Mathematics. Information Sciences. Physics] 2:3-9.
- Zaryadov, I. S. 2008. Statsionarnye vremennye kharakteristiki sistemy G/M/n/r s nekotorymi variantami distsipliny obobshchonnogo obnovleniya [Stationary temporal characteristics of the G/M/n/r system with some variations of the generalized renovation discipline]. Informatsionnye protsessy [Information Processes] 8(2): 108-124.
- Zaryadov, I. S. 2010. The Gl/M/n/infinity queuing system with generalized renovation. Automat. Rem. Contr. 71(4): 663-671. doi: 10.1134/S0005117910040077.
- Konovalov, M., and R. Razumchik. 2018. Comparison of two active queue management schemes through the M/D/1/N queue. Informatika i ee Primeneniya - Inform. Appl. 12(4): 9-15. doi: 10.14357/19922264180402.
- Chydzinski, A., and L. Chrost. 2011. Analysis of AQM queues with queue size based packet dropping. Int. J. Appl. Math. Comp. 21(3):567-577. doi: 10.2478/V10006- 011-0045-7.
- Bocharov, P. P., and A. V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Henrici, P. 1974. Applied and computational complex analysis. New York, NY: John Wiley & Sons. Vol. 1. 682 p.
- Riordan, J. 1958. An introduction to combinatorial analysis. 2nd ed. Wiley publication in mathematical statistics ser. Wiley. 244 p.
- Marichev, O. I., S. Yu. Slavyanov, and Yu. A. Brychkov. 2019. Bell Polynomials in the Mathematica system and asymptotic solutions of integral equations. Theor. Math. Phys. 201 (3): 1798-1807.
- Cvijovic, D. 2011. New identities for the partial Bell polynomials. Appl. Math. Lett. 24:1544-1547. doi: 10.1016/j.aml.2011.03.043.
- Qi, F., D.-W. Niu, Lim D., and Y.-H. Yao. 2020. Special values of the Bell polynomials of the second kind for some sequences and functions. J. Math. Anal. Appl. 491(2): 124382. 31 p. doi: 10.1016/j.jmaa.2020.124382.
- Bocharov, P. P., C. D'Apice, A. V. Pechinkin, and S. Salerno. 2003. The stationary characteristics of the G/MSP/1/r queueing system. Automat. Rem. Contr. 64(2):288- 301. doi: 10.1023/A:1022219232282.
- Pechinkin, A.V., and R. V. Razumchik. 2018. Sistemy massovogo obsluzhivaniya v diskretnom vremeni [Discrete time queuing systems]. Moscow: Fizmatlit. 432 p.
- Vishnevskii, V. M., A.N. Dudin, and V. I. Klimenok. 2018. Stokhasticheskie sistemy s korrelirovannymi potokami. Teoriya i primenenie v telekommunikatsionnykh setyakh [Stochastic systems with correlated streams. Theory and applications in telecommuni-cation networks]. Moscow: Tekhnosfera. 564 p.
- Abate, J., and W. Whitt. 2006. A unified framework for numerically inverting Laplace transforms. INFORMS J. Comput. 18(4):408-421. doi: 10.1287/ijoc.1050.0137.
- Horvath, I., G. Horvath, S. A.-D. Almousa, and M. Telek. 2019. Numerical inverse Laplace transformation using concentrated matrix exponential distributions. Performance Evaluation 137:102067. 30 p. doi: 10.1016/j.peva.2019.102067.
[+] About this article
Title
JOINT STATIONARY DISTRIBUTION IN THE GI/M/n/infinity QUEUE WITH GENERAL RENOVATION
Journal
Systems and Means of Informatics
Volume 31, Issue 3, pp 4-17
Cover Date
2021-11-10
DOI
10.14357/08696527210301
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queueing system; general renovation; queue management
Authors
T. A. Milovanova , I. S. Zaryadov , , and L. A. Meykhanadzhyan
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Str., Moscow 117198, Russian Federation
Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Financial University under the Government of the Russian Federation, 49 Lenin- gradsky Prosp., Moscow 125993, Russian Federation
|