Systems and Means of Informatics
2020, Volume 30, Issue 4, pp 25-37
APPLICATION OF CLUSTERING IN DEPLOYMENT OF MOBILE ACCESS POINTS IN AIR-GROUND WIRELESS NETWORKS
- E. G. Medvedeva
- E. M. Khayrov
- N. A. Polyakov
- Yu. V. Gaidamaka
Abstract
The paper provides an overview of tasks that arise in wireless networks with mobile base stations located on unmanned aerial vehicles (UAV).
The authors choose two methods of adaptive navigation based on user clustering for a comparative analysis of effectiveness of network deployment - the k- means method and the particle swarm method. The solution to the optimization problem is the positions of UAV that maximize the probability of coverage in the communication provision area with restrictions on interference from neighboring base stations. The application of the methods is illustrated for the scenario of a concert event which is defined as a case for providing communication between participants of a mass event in an open area.
[+] References (22)
- Zhang, L., H. Zhao, S. Hou, et al. 2019. A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access 7: 117460-117504.
- Kotel'nikov, V. A. 2006. 0n the transmission capacity of ether and wire in electric communications. Phys.-Usp. 49(7):736-744.
- TS 21.916. 2018. Technical Specifications and Technical Reports for a 5G based 3GPP system. Available at: https://portal.3gpp.org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3441 (accessed September 23, 2020).
- 5G Spectrum Recommendations, 5 G Amer. April 2017. Bellevue, WA. Available at: https://www.5gamericas.org/wp-content/uploads/2019/07/5GAJ5G_ Spectrum_Recommendations_2017_FINAL.pdf (accessed September 23, 2020).
- Guillen-Perez, A., R. Sanchez-Iborra, M.D. Cano, J. C. Sanchez-Aarnoutse, and J. Garcia-Haro. 2016. Wifi networks on drones. 8th ITU Kaleidoscope Academic Conference: ICTs for a Sustainable World Proceedings. Bangkok. 1-8.
- Mozaffari, M., W. Saad, M. Bennis, and M. Debbah. 2019. Communications and control for wireless drone-based antenna array. IEEE T. Commun. 67(1):820-834. doi: 10.1109/TC0MM.2018.2871453.
- Amer, R., W. Saad, and N. Marchetti. 2020. Mobility in the sky: Performance and mobility analysis for cellular-connected UAVs. IEEE T. Commun. 68(5):3229-3246. doi: 10.1109/TC0MM.2020.2973629.
- Hartigan, A., and M.A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. C Appl. 28(1): 100-108.
- Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. IEEE Conference (International) on Neural Networks IV Proceedings. IEEE. 1942-1948.
- Zeng, Y., R. Zhang, and T. J. Lim. 2016. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 54(5):36-42.
- Sun, J., and C. Masouros. 2019. Deployment strategies of multiple aerial BSs for user coverage and power efficiency maximization. IEEE T. Commun. 67(4):2981-2994. doi: 10.1109/TTOMM.2018.2889460.
- Chen, M., M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong. 2017. Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Area. Comm. 35(5): 1046-1061.
- Gapeyenko, M., I. Bor-Yaliniz, S. Andreev, H. Yanikomeroglu, and Y. Koucheryavy. 2018. Effects of blockage in deploying mmWave drone base stations for 5G networks and beyond. IEEE Conference (International) on Communications Workshops Proceedings. IEEE. Art. ID: 8403671. 6 p. doi: 10.1109/ICCW.2018.8403671.
- Ghazzai, H., M.B. Ghorbel, A. Kassler, and M.J. Hossain. 2018. Trajectory optimization for cooperative dual-band UAV swarms. IEEE Global Communications Conference Proceedings. IEEE. 1-7.
- Wu, H., X. Tao, N. Zhang, and X. Shen. 2018. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage. IEEE J. Sel. Area. Comm. 36(9):2045-2058. doi: 10.1109/JSAC.2018.2864418.
- Khosravi, Z., M. Gerasimenko, S. Andreev, and Y. Koucheryavy. 2018. Performance evaluation of UAV-assisted mmWave operation in mobility-enabled urban deployments. 41st Conference (International) on Telecommunications and Signal Processing Proceedings. IEEE. 150-153. doi: 10.1109/TSP.2018.8441321.
- Enayati, S., H. Saeedi, H. Pishro-Nik, and H. Yanikomeroglu. 2019. Moving aerial base station networks: A stochastic geometry analysis and design perspective. IEEE T. Wirel. Commun. 18(6): 2977-2988.
- Tafintsev, N., M. Gerasimenko, D. Moltchanov, M. Akdeniz, S. Yeh, N. Himayat,
S. Andreev, Y. Koucheryavy, and M. Valkama. 2018. Improved network coverage with adaptive navigation of mmWave-based drone-cells. IEEE Global Communications Conference Proceedings. IEEE. 1-7. doi: 10.1109/GLOCOMW.2018.8644097.
- Xu, D., and Y. Tian. 2015. A comprehensive survey of clustering algorithms. Annals Data Science 2 (2): 165-193.
- Kalantari, E., I. Bor-Yaliniz, A. Yongacoglu, and H. Yanikomeroglu. 2017. User association and bandwidth allocation for terrestrial and aerial base stations with
backhaul considerations. 28th Annual Symposium (International) on Personal, Indoor, and Mobile Radio Communications Proceedings. IEEE. 1-6.
- Zolanvari, M., R. Jain, and T. Salman. 2020. Potential data link candidates for civilian unmanned aircraft systems: A survey. IEEE Commun. Surv. Tut. 22(1):292-319.
- Preparata, F., and M. Shamos. 1985. Computational geometry: An introduction. Berlin-Heidelberg: Springer-Verlag. 390 p.
[+] About this article
Title
APPLICATION OF CLUSTERING IN DEPLOYMENT OF MOBILE ACCESS POINTS IN AIR-GROUND WIRELESS NETWORKS
Journal
Systems and Means of Informatics
Volume 30, Issue 4, pp 25-37
Cover Date
2020-12-10
DOI
10.14357/08696527200403
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
UAV; air-ground network; aerial-terrestrial communication; particle swarm; k-means; coverage probability
Authors
E. G. Medvedeva , , E. M. Khayrov , N. A. Polyakov , and Yu. V. Gaidamaka ,
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Str., Moscow 117198, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|