Systems and Means of Informatics
2020, Volume 30, Issue 3, pp 67-80
THE TECHNIQUE ALLOWING FOR TEMPORAL ESTIMATION OF MACHINE TRANSLATION INSTABILITY
- A. Yu. Egorova
- I. M. Zatsman
- M. G. Kruzhkov
- V. A. Nuriev
Abstract
The paper presents a technique allowing for temporal estimation of instability of neural machine translation (NMT).
This technique gives an opportunity to see how NMT of a given text fragment changes with time.
The experiment described in the paper involves 250 Russian text fragments. During a year, each text fragment was repeatedly translated
into Freneh. The time step was one month. To produce translations, the Google NMT system was used.
All the translations were annotated in a supracorpora
database to register the output errors (if there were any). Eventually, for each of 250 text fragments, there was a series of
12 annotated translations. The annotation containing the 12th translation had a heading denoting the degree of NMT
instability in relation to the entire series of translations.
This heading characterized
changes in translation quality or indicated their absence.
The paper is aimed to describe both the technique allowing for temporal estimation of NMT instability and results of its
application.
[+] References (22)
- Chouldeehova, A., and A. Roth. 2020. A snapshot of the frontiers of fairness in maehine learning. Commun. ACM 63(5):82-89.
- Sako, M. 2020. Artifieial intelligenee and the future of professional work. Commun. ACM 63(4):25-27.
- Egorova, A. Yu., I. M. Zatsman, V. V. Kosarik, and V. A. Nuriev. 2020. Nestabil'nost' neyronnogo mashinnogo perevoda [Instability of neural maehine translation]. Sistemy
i Sredstva Informatiki - Systems and Means of Informatics 30(2): 124-135.
- Brynjolfsson, E., and A. MeAfee. 2014. The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York -London: W. W. Norton & Co. 306 p.
- Brynjolfsson, E., and T. Mitehell. 2017. What ean maehine learning do? Workforee implieations. Science 358(6370):1530-1534.
- Fenstermaeher, K. D. 2005. The tyranny of taeit knowledge: What artifieial intelligenee tells us about knowledge representation. 38th Annual Hawaii International Conference on System Sciences Proceedings. Washington, D.C., USA: IEEE Computer Soeiety. 8:243a. doi: 10.1109/HICSS.2005.620.
- Denning, P. J., and D. E. Denning. 2020. Dilemmas of Artificial Intelligence. Commun. ACM 63(3):22-24.
- Moorkens, J., S. Castilho, F. Gaspari, and S. Doherty, eds. 2018. Translation quality assessment. Machine translation: Technologies and applications ser. Cham: Springer International Publishing. Vol. 1. 299 p.
- Scott, B. 2018. Translation, brains and the computer: A neurolinguistic solution to ambiguity and complexity in machine translation. Machine translation: Technologies and applications ser. Cham: Springer International Publishing. Vol. 2. 241 p.
- Specia, L., C. Scarton, and G. H. Paetzold. 2018. Quality estimation for machine translation. London: Morgan & Claypool Publs. 148 p.
- Zatsman, I.M., and M. G. Kruzhkov. 2018. Nadkorpusnaya baza dannykh konnektorov: razvitie sistemy terminov proektirovaniya [Supracorpora database of connectives: Design-oriented evolution of the term system]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 28(4):156-167.
- Egorova, A. Yu., I. M. Zatsman, and O. S. Mamonova. 2019. Nadkorpusnye bazy dannykh v lingvisticheskikh proektakh [Supracorpora databases in linguistic projects]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(3):77-91.
- Inkova-Manzotti, O.Yu. 2001. Konnektory protivopostavleniya vo frantsuzskom
i russkom yazykakh. Sopostavitel'noe issledovanie [Connectors of opposition in French and Russian: A comparative study]. Moscow: Informelektro. 429 p.
- Natsional'nyy korpus russkogo yazyka [Russian National corpus]. Available at: http://www.ruscorpora.ru/ (accessed July 27, 2020).
- Zatsman, I., N. Buntman, A. Coldefy-Faucard, and V. Nuriev. 2016. WEB knowledge base for asynchronous brainstorming. 17th European Conference on Knowledge Management Proceedings. Reading: Academic Publishing International Ltd. 1:976-983.
- Zatsman, I. 2018. Goal-oriented creation of individual knowledge: Model and information technology. 19th European Conference on Knowledge Management Proceedings. Reading: Academic Publishing International Ltd. 2:947-956.
- Zatsman, I. 2019. Finding and filling lacunas in knowledge systems. 20th European Conference on Knowledge Management Proceedings. Reading: Academic Publishing International Ltd. 2:1143-1151.
- atsman, I. 2020 (in press). Three-dimensional encoding of emerging meanings in AI- systems. 21th European Conference on Knowledge Management Proceedings. Reading: Academic Publishing International Ltd.
- Inkova, O. Yu. 2018. Nadkorpusnaya baza dannykh kak instrument formal'noy varia- tivnosti konnektorov [Supracorpora database as an instrument of the study of the formal variability of connectives]. Computer Linguistic and Intellectual Technologies: Conference (International) "Dialog" Proceedings. Moscow. 17(24):240-253.
- Zaliznyak, A. A., I. M. Zatsman, and O.Yu. Inkova. 2017. Nadkorpusnaya baza dannykh konnektorov: postroenie sistemy terminov [Supracorpora database on connectives: Term system development]. Informatika i ee Primeneniya - Inform. Appl.
11 (1): 100-108.
- Dobrovol'skiy, D.O., A. A. Kretov, and S. A. Sharov. 2005. Korpus parallel'nykh tekstov: arkhitektura i vozmozhnosti ispol'zovaniya [Corpus of parallel texts: Architecture and applications]. Natsional'nyy korpus russkogo yazyka: 2003-2005 [Russian National Corpus: 2003-2005]. Moscow: Indrik. 263-296.
- Tresor de la Langue Fran qaise informatise. Available at: http://atilf.atilf.fr/ (aeeessed July 27, 2020).
[+] About this article
Title
THE TECHNIQUE ALLOWING FOR TEMPORAL ESTIMATION OF MACHINE TRANSLATION INSTABILITY
Journal
Systems and Means of Informatics
Volume 30, Issue 3, pp 67-80
Cover Date
2020-11-10
DOI
10.14357/08696527200307
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
neural machine translation; instability; quality estimation for machine translation; linguistic annotation; instability types
Authors
A. Yu. Egorova , I. M. Zatsman , M. G. Kruzhkov , and V. A. Nuriev
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|