Systems and Means of Informatics
2020, Volume 30, Issue 2, pp 43-55
MULTIDISCIPLINARY NEUROINFORMATICS PROBLEMS FOR EXECUTION IN DISTRIBUTED COMPUTING INFRASTRUCTURES
- D. Y. Kovalev
- I. A. Shanin
- E. M. Tirikov
Abstract
Neuroinformatics lies at the intersection of computer science and neuroscience, making it possible to use methods and tools from one domain for accumulating, processing, analyzing, and managing data and modeling techniques from another. Nowadays, neuroinformatics is evolving very fast, this leads to a rapid expansion of the range of scientific problems that need to be solved.
This article deals with a number of urgent problems in the area of cognitive functions modeling of the neurophysiology domain. Problems are analyzed from the point of view of neuroinformatics. Common pitfalls, methods, processing tools, and implementation issues are examined. In total, four problem statements are discussed with data sets residing in the resting state and task functional magnetic resonance imaging as well as in electroencephalograms. The methods vary from simple linear models to highly sophisticated deep neural networks. Justifications for using distributed computing infrastructures are discussed for each problem, including high dimensionality in data that requires, on the one hand, distributed implementation and, on the other hand, using computationally extensive methods that require low-level GPU-based parallelization.
[+] References (35)
- Friston, K. 2011. Functional and effective connectivity: A review. Brain Connectivity 1(1): 13-36.
- Greicius, M. 2008. Resting-state functional connectivity in neuro-psychiatric disorders. Curr. Opin. Neurol. 21(4):424-430.
- Allgaier, N., T. Banaschewski, G. Barker, et al. 2015. Nonlinear functional mapping of the human brain. 21 p. Available at: https://arxiv.org/abs/1510.03765 (accessed March 23, 2020).
- Beckmann, C., and S. Smith. 2004. Probabilistic independent component analysis for functional magnetic resonance imaging. Med. Imaging 23(2): 137-152.
- Rachakonda, S., R. Silva, J. Liu, and V. Calhoun. 2016. Memory efficient PCA methods for large group ICA. Front. Neurosci. 10:738-749.
- Soch, J., A. Meyer, and J. Haynes. 2017. Howto improve parameter estimates in GLM- based fMRI data analysis: Cross-validated Bayesian model averaging. Neuroimage 158:186-195.
- Ilknur, I., A. Nicholas, C. Allgaier, et al. 2014. A deterministic and symbolic regression hybrid applied to resting-state fMRI data. Genetic programming theory and practice XI. Genetic and evolutionary computation. New York, NY: Springer. 155-173.
- Cao, X., B. Sandstede, and X. Luo. 2019. A functional data method for causal dynamic network modeling of task-related fMRI. Front. Neurosci. 13:127. 19 p.
- Chen, T., Y. Rubanova, J. Bettencourt, and D. Duvenaud. 2018. Neural ordinary differential equations. Advances in Neural Information Processing Systems Conference Proceedings. Eds. S. Bengio, H. Wallach, H. Larochelle, et al. Montreal, Canada. 6571-6583.
- Human Connectome Project. Available at: http://humanconnectome.org/1000 (accessed March 23, 2020).
- Functional Connectomes Project. Available at: http://fcon_1000.projects.nitrc.org/ (accessed March 23, 2020).
- Garn, C., M. Allen, and J. Larsen. 2009. An fMRI study of sex differences in brain activation during object naming. Cortex 49(5):610-618.
- Rutherford, A. 2001. Introducing ANOVA and ANCOVA: A GLM approach. Thousand Oaks, CA: Sage Publications. 182 p.
- McRae, K., K. Ochsner, I. Mauss, J. Gabrieli, and J. Gross. 2008. Gender differences in emotion regulation: An fMRI study of cognitive reappraisal. Group Process. Interg. 11(2): 143-162.
- Xu, C., C. Li, H. Wu, et al. 2014. Gender differences in cerebral regional homogeneity of adult healthy volunteers: A resting-state fMRI study. BioMed Res. Int. 2015:183074. 8 p.
- Filippi, M., P. Valsasina, P. Misci, et al. 2013. The organization of intrinsic brain activity differs between genders: A resting-state FMRI study in a large cohort of young healthy subjects. Hum. Brain Mapp. 34(6):1330-1343.
- Zhang, C., C.C. Dougherty, S. A. Baum, T. White, and A.M. Michael. 2018. Functional connectivity predicts gender: Evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39(4):1765-1776.
- Weis, S., K. R. Patil, F. Hoffstaedter, A. Nostro, B.T. Thomas Yeo, and
S. B. Eickhoff. 2019. Sex classification by resting state brain connectivity. Cereb. Cortex. Art. ID: bhz129. Available at: https://academic.oup.com/cercor/advance- article/doi/10.1093/cercor/bhz129/5524764 (accessed March 23, 2020).
- Tamburro, G. , P. Fiedler, D. Stone, J. Haueisen, and S. Comani. 2018. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEGrecordings. Peer J. 6:e4380.
- Yang, B., K. Duan, and T. Zhang. 2016. Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter. Neurocomputing 214:1053-1060.
- Nobre Leite, N.M., E.T. Pereira, E. C. Gurjao, and L. R. Veloso. 2018. Deep convolutional autoencoder for EEG noise filtering. Conference (International) on Bioinformatics and Biomedicine (BIBM). IEEE. 2605-2612.
- Pion-Tonachini, L., K. Kreutz-Delgado, and S. Makeig. 2019. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neurolmage 198:181-197.
- Hartmann, K. G., R.T. Schirrmeister, and T. Ball. 2018. EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals. Available at: https://arxiv.org/abs/1806.01875 (accessed March 23, 2020).
- Abdelfattah, S. M., G. M. Abdelrahman, and M. Wang. 2018. Augmenting the size of EEG datasets using generative adversarial networks. Joint Conference (International) on Neural Networks. IEEE. 1-6.
- Savran, A., K. Ciftci, G. Chanel, et al. 2007. Emotion detection in the loop from brain signals and facial images. eNTERFACE Workshop Proceedings. Presses universitaires de Louvain. 47926.
- Koelstra S., C. Muhl, M. Soleymani, et al. 2012. Deap: A database for emotion analysis; using physiological signals. IEEE T. Affect. Comput. 3(1):18-31.
- Katsigiannis, S. and N. Ramzan. 2018. DREAMER: A database for emotion recogni- tionthrough EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health 22(1): 98-107.
- Jirayucharoensak, S., S. Pan-Ngum, and P. Israsena. 2014. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014:627892. 10 p.
- Yan, J., S. Chen, and S. Deng. 2019. A EEG-based emotion recognition model withrhythm and time characteristics. Brain Informatics 6(1):7.
- Xing, X., Z. Li, T. Xu, L. Shu, B. Hu, and X. Xu. 2019. SAE+LSTM: A new framework for emotion recognition from multi-channel EEG. Front. Neurorobotics 13:37.
- Cremers, H, T. Wager, and T. Yarkoni. 2017. The relation between statistical power and inference in fMRI. PLoS One 12(11):e0184923.
- Zaharia, M., R. S. Xin, P. Wendell, et al. 2016. Apache spark: A unified engine for big data processing. Commun. ACM 59(11):56-65.
- Guo, R., Y. Zhao, Q. Zou, X. Fang, and S. Peng. 2018. Bioinformatics applications on Apache Spark. Gigascience 7(8):giy098. 10 p.
- Makkie, M., X. Li, S. Quinn, et al. 2018. A distributed computing platform for fMRI big data analytics. IEEE T. Big Data 5(2):109-119.
- TensorFlow Project. Available at: https://www.tensorflow.org/ (accessed March 23, 2020).
[+] About this article
Title
MULTIDISCIPLINARY NEUROINFORMATICS PROBLEMS FOR EXECUTION IN DISTRIBUTED COMPUTING INFRASTRUCTURES
Journal
Systems and Means of Informatics
Volume 30, Issue 2, pp 43-55
Cover Date
2020-06-30
DOI
10.14357/08696527200205
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
data intensive research; neuroinformatics; distributed computing infrastructures
Authors
D. Y. Kovalev ,1. A. Shanin , and E. M. Tirikov
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|