Systems and Means of Informatics
2020, Volume 30, Issue 1, pp 20-33
DOMAIN SPECIFICATIONS FOR DATA-INTENSIVE PROBLEM SOLVING IN NEUROPHYSIOLOGY
Abstract
Neurophysiology as a data-intensive science requires detailed data specification from the domain point of view. Such specifications are necessary for organization of semantic search over collected data, creation of conceptual schemes for a homogeneous representation of source data, and providing interoperability for research problem solving using neurophysiological data by specialists of the domain. Known ontologies that provide concepts of neurophysiology define them in a formal way only partially. Existing ontologies are not enough to express semantics of data, methods, and processes for solving most of research problems. This particular work is aimed at developing formal specifications for the domain of analysis and modeling of cognitive functions of brain. The coherent specifications developed can be used to manage collections of heterogeneous data and methods, to create conceptual schemes of the domain, to provide semantic integration of heterogeneous data, and problem solving in terms of the domain.
[+] References (12)
- Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3:160018. doi: 10.1038/sdata.2016.18.
- Skvortsov, N. A. 2019. Meaningful data reuse in research communities. Data analytics and management in data intensive domains. Eds. Y. Manolopoulos and S. Stupnikov. Communications in computer and information science ser. Springer. 1003:37-51. doi: 10.1007 978-3-030-23584-0-3.
- Pernet, C., S. Appelhoff, G. Flandin, et al. 2019. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data 6:103. doi: 10.1038/s41597-019-0104-8.
- Smith, B., M. Ashburner, C. Rosse, et al. 2007. The OBO foundry: Coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25:1251-1255. doi: 10.1038/nbt1346.
- Arp, R., B. Smith, and A.D. Spear. 2015. Building ontologies with basic formal ontology. MIT Press. 248 p. Available at: https://mitpress.mit.edu/books/building- ontologies-basic-formal-ontology (accessed April 5, 2020).
- Bandrowski, A. 2016. The ontology for biomedical investigations. PLoS One 11 (4):e0154556. doi: 10.1371 /journal.pone.0154556.
- Larson, S.D., and M.E. Martone. 2009. Ontologies for neuroscience: What are they and what are they good for? Front. Neurosci. 3(1):60-67. doi: 10.3389/neu- ro.01.007.2009.
- Aevermann, B.D., M. Novotny, T. Bakken, et al. 2018. Cell type discovery using single-cell transcriptomics: Implications for ontological representation. Hum. Mol. Genet. 27(R1):R40-R47. doi: 10.1093/hmg/ddy100.
- Smith, B., W. Ceusters, B. Klagges, et al. 2005. Relations in biomedical ontologies. Genome Biol. 6(5):R46. doi: 10.1186/gb-2005-6-5-r46.
- Skvortsov, N. A., and S. A. Stupnikov. 2019. Formalizing requirement specifications for problem solving in a research domain. New trends in databases and information systems. Eds. T. Welzer, J. Eder, V. Podgorelec, et al. Communications in computer and information science ser. Springer. 1064:266-279. doi: 10.1007/978-3-030-30278- 8_29.
- Horridge, M., N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. H. Wang. 2006. The Manchester OWL syntax. CEUR Workshop Proceedings: OWL: Experiences and Directions. 216:6. 10 p. Available at: http://ceur-ws.org/Vol- 216/submission_9.pdf (accessed November 15, 2019).
- Belhajjame, K., J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao. 2013. PROV-O: The PROV ontology. W3C Recommendation. World Wide Web Consortium (W3C). Available at: https://www.w3.org/TR/prov-o/ (accessed November 15, 2019).
[+] About this article
Title
DOMAIN SPECIFICATIONS FOR DATA-INTENSIVE PROBLEM SOLVING IN NEUROPHYSIOLOGY
Journal
Systems and Means of Informatics
Volume 30, Issue 1, pp 20-33
Cover Date
2020-05-30
DOI
10.14357/08696527200102
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
conceptualization; ontological modeling; neurophysiology; data interoperability; data reuse
Authors
N. A. Skvortsov
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|