Systems and Means of Informatics
2019, Volume 29, Issue 4, pp 50-64
STATIONARY CHARACTERISTICS OF THE GI/MSP/n/ro QUEUE WITH GENERAL RENOVATION
- I. S. Zaryadov
- L. A. Meykhanadzhyan
- T. A. Milovanova
Abstract
Consideration is given to the GI/MSP/n/æ queue with general input flow of customers, n identical servers, service process of markovian type, queue of infinite capacity, and general renovation. General renovation being the variant of an active queue management mechanism, implies that upon a service completion, a customer may remove a random number of customers from the queue (if any is available), with a given probability distribution. Using embedded Markov chain technique, one derives stationary distributions of the main system's performance characteristics. The obtained results are ready for numerical implementation and allow one to compute stationary distributions of the system size, stationary loss probability, and waiting time distribution (under FIFO (first in, first out) service and head-of-the-queue renovation).
[+] References (19)
- Zaryadov, I. S. 2010. The GI/M/n/æ queuing system with generalized renovation. Automat. Rem. Contr. 71 (4): 663-671.
- Bocharov, P.P., C. D'Apice, A. V. Pechinkin, and S. Salerno. 2003. The stationary characteristics of the G/MSP/1/r queueing system. Automat. Rem. Contr. 64(2):288- 301.
- Bocharov, P. P., and I. S. Zaryadov. 2007. Statsionarnoe raspredelenie veroyatnostey v sistemakh massovogo obsluzhivaniya s obnovleniem [Stationary probability distribution of the queueing system with renovation]. Vestnik RUDN. Ser. Matematika. Informatika. Fizika [Bulletin of Peoples' Friendship University of Russia. Ser. Mathematics. Information Sciences. Physics] 1-2:15-25.
- Zaryadov, I. S. 2008. Statsionarnye kharakteristiki obsluzhivaniya v sisteme G/M/n/r s obobshchennym obnovleniem [Queueing system G/M/n/r with general renovation. Stationary characteristics]. Vestnik RUDN. Ser. Matematika. Informatika. Fizika [RUDN J. Mathematics Information Sciences Physics] 2:3-9.
- Bocharov, P. P. 1996. Stationary distribution of a finite queue with recursive input flow and Markovian service discipline. Automat. Rem. Contr. 57(9): 1274-1283.
- Pechinkin, A.V., and V.V. Chaplygin. 2003. Statsionarnye kharakteristiki siste- my massovogo obsluzhivaniya G/MSP/n/r [The stationary characteristics of the G/MSP/n/r queueing system]. Vestnik RUDN. Ser. Prikladnaya matematika i informatika [Bulletin of Peoples' Friendship University of Russia. Ser. Applied Mathematics and Information Sciences] 1:119-143.
- Pechinkin, A. V., and V. V. Chaplygin. 2004. Stationary characteristics of the SM/MSP/n/r queuing system. Automat. Rem. Contr. 65(9):1429-1443.
- Chaplygin, V.V. 2005. Sistema massovogo obsluzhivaniya G/MSP/n/r s potokom otritsatel'nykh zayavok [A queueing system G/MSP/n/r with flow of negative claims]. Informatsionnye protsessy [Information Processes] 5(1):1-19.
- Chydzinski, A., and L. Chrost. 2011. Analysis of AQM queues with queue size based packet dropping. Int. J. Appl. Math. Comp. 21(3):567-577. doi: 10.2478/v10006- 011-0045-7.
- Zaryadov, I. S., R. V. Razumchik, and T. A. Milovanova. 2016. Stationary waiting time distribution in G/M/n/r with random renovation policy. Comm. Comp. Inf. Sc. 678:418-429. doi: 10.1007/978-3-319-51917-331.
- Chydzinski, A., and P. Mrozowski. 2016. Queues with dropping functions and general arrival processes. PLoS ONE 11 (3):e0150702. doi: 10.1371/journal.pone.0150702.
- Konovalov, M., andR. Razumchik. 2018. Comparison of two active queue management schemes through the M/D/1/N queue. Informatika i ee Primeneniya - Inform. Appl. 12(4):9-15. doi: 10.14357/19922264180402.
- Zaryadov, I., E. Bogdanova, T. Milovanova, S. Matushenko, and D. Pyatkina. 2018. Stationary characteristics of the GI/M/1 queue with general renovation and feedback. 10th Congress (International) on Ultra Modern Telecommunications and Control Systems and Workshops. 1-6. doi: 10.1109/icumt.2018.8631244.
- Bocharov, P. P., and A. V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Steeb, W. H., and Y. Hardy 2011. Matrix calculus and Kronecker product: A practical approach to linear and multilinear algebra. River Edge, NJ: World Scientific. 324 p.
- Neuts, M.F. 1981. Matrix-geometric solutions in stochastic models. An algorithmic approach. Baltimore-London: The Johns Hopkins University Press. 332 p.
- Latouche, G., and V. Ramaswami. 2000. Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM ser. on statistics and applied probability. Philadelphia, PA: SIAM. 348 p.
- Pechinkin, A.V., and R.V. Razumchik. 2018. Sistemy massovogo obsluzhivaniya v diskretnom vremeni [Discrete time queuing systems]. Moscow: Fizmatlit. 432 p.
- Bocharov, P. P., C. D'Apice, A. V. Pechinkin, and S. Salerno. 2004. Queueing theory. Utrecht, Boston: VSP. 446 p.
[+] About this article
Title
STATIONARY CHARACTERISTICS OF THE GI/MSP/n/ro QUEUE WITH GENERAL RENOVATION
Journal
Systems and Means of Informatics
Volume 29, Issue 4, pp 50-64
Cover Date
2019-11-30
DOI
10.14357/08696527190405
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queueing system; general renovation; markovian service process; queue management; embedded Markov chain
Authors
I. S. Zaryadov , , L. A. Meykhanadzhyan , and T. A. Milovanova
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Str., Moscow 117198, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Financial University under the Government of the Russian Federation, 49 Leningradsky Prosp., Moscow 125993, Russian Federation
|