Systems and Means of Informatics
2019, Volume 29, Issue 3, pp 29-38
ADVANTAGE INDEX IN BAYESIAN RELIABILITY AND BALANCE MODELS WITH BETA-POLYNOMIAL A PRIORI DENSITIES
- A. A. Kudryavtsev
- S. I. Palionnaia
- O. V. Shestakov
Abstract
This work is devoted to the research of the probabilistic characteristics of the advantage index in Bayesian balance models, when negative and positive factors affecting the functioning of the system have an a priori beta-distribution and distribution with polynomial density, for example, uniform or parabolic distribution. The results of the work can be used to research marginal reliability of complex modifiable information-communication systems and other advantage indexes, for example, availability ratio and probability of staying in working condition in reliability theory, probability that the call will not be lost, in the theory of mass service, etc. The given method can be used for similar formulations of the problems in the research of distributions with piecewise polynomial a priori densities, for example, Simpson distribution, Irwin-Hall distribution, Bates distribution, etc.
[+] References (8)
- Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation: Limit theorems and applications. Boca Raton, FL: CRC Press. 288 p.
- Korolev, V. Yu., and I. A. Sokolov. 2006. Osnovy matematicheskoy teorii nadezhnosti modifitsiruemykh sistem [Fundamentals of mathematical theory of modified systems reliability]. Moscow: IPI RAN. 108 p.
- Kudryavtsev, A. A., I. A. Sokolov, and S.Ya. Shorgin. 2013. Bayesovskaya rekur- rentnaya model' rosta nadezhnosti: ravnomernoe raspredelenie parametrov [Bayesian recurrent model of reliability growth: Uniform distribution of parameters]. Informatika i ee Primeneniya - Inform. Appl. 7(2):55-59.
- Kudryavtsev, A. A. 2018. Bayesovskie modeli balansa [Bayesian balance models]. Informatika i ee Primeneniya - Inform. Appl. 12(3): 18-27.
- Prudnikov, A. P., Yu. A. Brychkov, and O. I. Marichev. 2003. Integraly i ryady. V 31. T. 3. Spetsial'nye funktsii. Dopolnitel'nye glavy [Integrals and series. In 3 vols. Vol. 3. Special functions. Additional chapters]. 2nd ed. Moscow: FIZMATLIT. 688 p.
- Kudryavtsev, A. A., S. I. Palionnaia, and S.Ya. Shorgin. 2018. Beta-polinomial'nye apriornye plotnosti v bayesovskikh modelyakh nadezhnosti [Beta-polynomial a priori densities in Bayesian reliability models]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 28(3):54-61.
- Prudnikov, A. P., Yu. A. Brychkov, and O. I. Marichev. 2002. Integraly i ryady.
V 3 t. T. 1. Elementarnye funktsii [Integrals and series. In 3 vols. Vol. 3. Elementary functions]. 2nd ed. Moscow: FIZMATLIT. 632 p.
- Zhavoronkova, Iu.V., A. A. Kudryavtsev, and S.Ya. Shorgin. 2015. Bayesovskaya rekurrentnaya model' rosta nadezhnosti: beta-ravnomernoe raspredelenie parametrov [Bayesian recurrent model of reliability growth: Beta-uniform distribution of parameters]. Informatika i ee Primeneniya - Inform. Appl. 9(1 ):98-105.
[+] About this article
Title
ADVANTAGE INDEX IN BAYESIAN RELIABILITY AND BALANCE MODELS WITH BETA-POLYNOMIAL A PRIORI DENSITIES
Journal
Systems and Means of Informatics
Volume 29, Issue 3, pp 29-38
Cover Date
2019-10-30
DOI
10.14357/08696527190303
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bayesian method; mixed distributions; balance models; advantage index; reliability growth; beta-distribution
Authors
A. A. Kudryavtsev , S. I. Palionnaia ,
and O. V. Shestakov ,
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|