Systems and Means of Informatics
2018, Volume 28, Issue 3, pp 62-71
FORECASTING MOMENTS OF FINITE NORMAL MIXTURES USING FEEDFORWARD NEURAL NETWORKS
- A. K. Gorshenin
- V. Yu. Kuzmin
Abstract
Modeling and analysis of nonstationary data flows in real systems of various types can be effectively performed using finite local-scale normal mixtures. Approbation of the prediction methodology developed by the authors is carried out on the example of time-varied moments of the mixed probability model. Within this approach, values of the initial continuous time-series are replaced with the discrete ones and then modified samples are analyzed with a neural network. For short-term forecasting, the accuracy of more than 80% is demonstrated. Feedforward neural network is implemented using the Keras deep learning library, the TensorFlow framework, and the Python programming language.
[+] References (11)
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil'nosti khaoticheskikh protsessov [Probabilistic and statistical methods of decomposition of volatility of chaotic processes]. Moscow: Moscow University Publs. 512 p.
- Wu, X.D., V. Kumar, J.R. Quinlan, et al. 2008. Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1): 1-37.
- Yang, M.-Sh., Ch.-Yo Lai, and C.-Y. Lin. 2012. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recogn. 45(11):3950-3961.
- Lee, G., and C. Scott. 2012. EM algorithms for multivariate Gaussian mixture models with truncated and censored data. Comput. Stat. Data An. 56(9):2816-2829.
- Gorshenin, A.K., V. Yu. Korolev, and A.M. Tursunbaev. 2008. Mediannye modifikatsii EM- i SEM-algoritmov dlya razdeleniya smesey veroyatnostnykh raspredeleniy i ikh primenenie k dekompozitsii volatil'nosti finansovykh vremennykh ryadov [Median modifications of the EM and SEM algorithms for decomposing mixtures of probability distributions and their applications to the decomposition of volatility of financial time series]. Informatika i ee Primeneniya - Inform. Appl. 2(4): 12-47.
- Batanov, G. M., A. K. Gorshenin, V. Yu. Korolev, D. V. Malakhov, and N. N. Skvortsova. 2012. The evolution of probability characteristics of low-frequency plasma turbulence. Math. Models Computer Simulations 4(1): 10-25.
- Gorshenin, A. K. 2017. Analiz veroyatnostno-statisticheskikh kharakteristik osadkov na osnove patternov [Pattern-based analysis of probabilistic and statistical characteristics of precipitations]. Informatika i ee Primeneniya - Inform. Appl. 11(4):38-46.
- Gorshenin, A.K., and V. Yu. Kuzmin. 2018. Neural network forecasting of precipitation volumes using patterns. Pattern Recogn. Image Anal. 28(3):450-461.
- Gorshenin, A. K. 2016. Kontseptsiya onlayn-kompleksa dlya stokhasticheskogo mode- lirovaniya real'nykh protsessov [Concept of online service for stochastic modeling of real processes]. Informatika i ee Primeneniya - Inform. Appl. 10(1):72-81.
- Glorot, X., A. Bordes, and Y. Bengio. 2011. Deep sparse rectifier neural networks. J. Mach. Learn. Res. 15:315-323.
- Kingma, D., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.
[+] About this article
Title
FORECASTING MOMENTS OF FINITE NORMAL MIXTURES USING FEEDFORWARD NEURAL NETWORKS
Journal
Systems and Means of Informatics
Volume 28, Issue 3, pp 62-71
Cover Date
2018-09-30
DOI
10.14357/08696527180305
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
finite normal mixtures; moments; artificial neural network; forecasting; deep learning; data mining
Authors
A. K. Gorshenin , and V. Yu. Kuzmin
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
"Wi2Geo LLC", 3-1 Mira Ave., Moscow 129090, Russian Federation
|