Systems and Means of Informatics
2018, Volume 28, Issue 2, pp 60-74
COMPARISON OF THE FEATURES OF THE REPRESENTATION OF GEODATA IN CARTOGRAPHY AND GEOINFORMATICS
Abstract
The aim of the study is formation of approaches to creation of the methodology of data generalization. The comparative analysis of models of GEODATA in analogue and digital paradigms is presented. It is shown that GEODATA can be considered as an example of the generalized complex data type, which includes along with semantics spatial or spatial-temporal components. The features of organization of multilevel geodata bases form the extended typology of relations in this model. The features of variability and alternativeness of GEODATA, which play an important role in the created methodology of reversible generalization of information objects, are considered.
[+] References (24)
- Zatsman, I. M., O. S. Mamonova, and A. Yu. Shchurova. 2017. Obratimost' i al'ternativnost' generalizatsii modeley perevoda konnektorov v parallel'nykh tek- stakh [Reversibility and alternativeness of generalization of connectives translations models in parallel texts]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27 (2): 125-142.
- Zatsman, I.M., M. G. Kruzhkov, and E.Yu. Loshchilova. 2017. Metody analiza chastotnosti modeley perevoda konnektorov i obratimost' generalizatsii statisticheskikh dannykh [Methods of frequency analysis of connectives translations and reversibility of statistical data generalization]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27 (4): 164-176.
- Taillandier, P., C. Duchene, and A. Drogoul. 2008. Knowledge revision in systems based on an informed tree search strategy: Application to cartographic generalisation. 5th Conference (International) on Soft Computing as Transdisciplinary Science and Technology Proceedings. New York, NY: ACM. 273-278. doi: 10.1145/ 1456223.1456281.
- Beard, K. 2012. A semantic web based gazetteer model for VGI. 1st ACM SIGSPATIAL Workshop (International) on Crowdsourced and Volunteered Geographic Information Proceedings. New York, NY: ACM. 54-61. doi: 10.1145/
2442952.2442962.
- Rosenbloom, P. S. 2013. On computing: The fourth great scientific domain. Cambridge, MA: MIT Press. 307 p.
- Dollner, J., and O. Kersting. 2000. Dynamic 3D maps as visual interfaces for spatio- temporal data. 8th ACM Symposium (International) on Advances in Geographic Information Systems Proceedings. New York, NY: ACM. 115-120. doi: 10.1145/
355274.355291.
- Dogru, A., and N. Ulugtekin. 2004. Junction modeling in vehicle navigation maps and multiple representations. 20th ISPRS Congress Proceedings 35(B4):244-248.
- Chimani, M., T. C. van Dijk, and J.-H. Haunert. 2014. How to eat a graph: Computing selection sequences for the continuous generalization of road networks. 22nd ACM SIGSPATIAL Conference (International) on Advances in Geographic Information Systems Proceedings. New York, NY: ACM. 243-252. doi: 10.1145/2666310.2666414.
- Schafers, M., and U. W. Lipeck. 2014. SimMatching: Adaptable road network matching for efficient and scalable spatial data integration. 1st ACM SIGSPATIAL PhD Workshop Proceedings. NewYork, NY: ACM. 43-48. doi: 10.1145/2694859.2694866.
- Oehrlein, J., T. C. van Dijk, and J.-H. Haunert. 2016. Location-dependent generalization of road networks based on equivalent destinations. Eurographics/IEEE VGTC Conference on Visualization Proceedings. Goslar, Germany: Eurographics Association. 451-460.
- Kapralov, E.G., A.V. Koshkarev, and V. S. Tikunov. 2004. Osnovy geoinformatiki [Fundamentals of geoinformatics]. Moscow: Akademiya. Vol. 1. 352 p.
- Chandra, A.M., and S.K. Gosh. 2008. Distantsionnoe zondirovanie i geografiche- skie informatsionnye sistemy [Remote sensing and geographical information system]. Moscow: Tekhnosfera. 312 p.
- Shovengerdt, R. A. 2010. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheniy [Remote sensing. Models and methods for image processing.]. Moscow: Tekhnosfera. 560 p.
- Dulin, S. K., N. G. Dulina, and D. A. Nikishin. 2015. Osobennosti modeley geodan- nykh i metodov ikh obrabotki v aspekte obespecheniya semanticheskoy geointeropera- bel'nosti [Features of models of geodata and methods of their processing in aspect of maintenance semantic geointeroperability]. Informatsionnye tekhnologii [Information Technologies] 21(3):224-235.
- Davis, C.A., and A.H.F. Laender. 1999. Multiple representations in GIS: Materialization through map generalization, geometric, and spatial analysis operations. 7th ACM Symposium (International) on Advances in Geographic Information Systems Proceedings. New York, NY: ACM. 60-65. doi: 10.1145/320134.320151.
- Qiang, H., and M. Bertolotto. 2004. A multi-level data structure for vector maps. 12th Annual ACM Workshop (International) on Geographic Information Systems Proceedings. New York, NY: ACM. 214-221. doi: 10.1145/1032222.1032254.
- Corcoran, P., P. Mooney, and M. Bertolotto. 2012. Utilizing geometric coherence in the computation of map transformations. Comput. Geosci. 47: 151-159.
- Zhurkin, I. G., and S. V. Shaytura. 2009. Geoinformatsionnye sistemy [Geoinformation systems]. Moscow: KUDITS-Press. 272 p.
- Komissarov, D. V. 2001. Metodika resheniya problem tsifrovogo fototriangulirovaniya [Method of addressing of digital phototriangulation]. Conference (International) RDAMM-2001 Proceedings. 6(2):213-217.
- Lurie, I. K., andT. E. Samsonov. 2010. Strukturai soderzhanie bazy prostranstvennykh dannykh dlya mul'timasshtabnogo kartografirovaniya [Structure and content of spatial database for multi-dimensional mapping]. Geodeziya i kartografiya [Geodesy and Cartography] 11:17-23.
- Belussi, A., B. Catania, and E. Bertino. 2003. A reference framework for integrating multiple representations of geographical maps. 11th ACM Symposium (International) on Advances in Geographic Information Systems Proceedings. New York, NY: ACM. 33-40. doi: 10.1145/956676.956681.
- Gubiani, D., and A. Montanari. 2008. A conceptual spatial model supporting topologically-consistent multiple representations. 16th ACM SIGSPATIAL Conference (International) on Advances in Geographic Information Systems Proceedings.
New York, NY: ACM. 90-100. doi: 10.1145/1463434.1463446.
- Codd, E. F. 1979. Extending the database relational model to capture more meaning. ACM T. Database Syst. 4(4):395-434.
- Voronin, M. V., S. A. Zaychenko, and Y. F. Zykova. 2013. Razvitiebazovoy podlozhki v mul'timasshtabnom kartografirovanii [Basemap evolution in multiscale cartography]. InterCarto/InterGIS 19(1): 19-22. doi: 10.24057/2414-9179-2013-1-19-19-22
[+] About this article
Title
COMPARISON OF THE FEATURES OF THE REPRESENTATION OF GEODATA IN CARTOGRAPHY AND GEOINFORMATICS
Journal
Systems and Means of Informatics
Volume 28, Issue 2, pp 60-74
Cover Date
2018-05-30
DOI
10.14357/08696527180205
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
geodata; digital cartography; geoinformatics; multilevel geodata base; cartographic generalization
Authors
D. A. Nikishin
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|