Systems and Means of Informatics
2018, Volume 28, Issue 1, pp 35-52
PROBABILISTIC APPROACH TO SOLVING THE MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM
- M. B. Goncharenko
- T. V. Zakharova
Abstract
The brain study is the one of the most popular research area in contemporary neuroscience. It accumulates efforts of broad research groups involving different kinds of experts: psychologists, mathematicians, etc. The main problem in this area is how to localize cerebral cortex activity using experimental data. This problem is critical for all neuroimaging methods (functional magnetic resonance imaging, electroencephalography, magnetoencephalography (MEG), etc.). In the paper, MEG data are considered. Magnetoencephalography is anon- invasive neuroimaging technique which allows recording extra weak magnetic fields generated by neurons in human brain. Sources reconstruction using MEG data is an ill-posed inverse problem. The paper considers the Bayesian derivation of the inverse problem solution for MEG data. The main steps are described and necessary calculations are provided. Particular attention was paid to such advantage of the Bayesian approach as universality. It was shown how other popular methods which are widely used in research could be obtained within the unified framework. A generalization to the group-wise experiment is also considered. The paper also provides possible ways of further improvement of the MEG inverse problem solving techniques using the Bayesian approach.
[+] References (29)
- Hamalainen, M., R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa. 1993. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2):413-497. doi: 10.1103/ revmo dphys .65.413.
- Zakharova, T.V., S. Yu. Nikiforov, M.B. Goncharenko, M.A. Dranitsyna, G. A. Klimov, M. Sh. Khaziakhmetov, and N. V. Chayanov. 2012. Metody obrabotki signalov dlya lokalizatsii nevospolnimykh oblastey golovnogo mozga [Signal processing methods for localization of nonrenewable brain regions]. Sistemy i Sredstva Informati- ki - Systems and Means of Informatics 22(2): 15 7-175.
- Kress, R., L. Kuhn, and R. Potthast. 2002. Reconstruction of a current distribution from its magnetic field. Inverse Probl. 18(4):1127-1146. doi: 10.1088/02665611/18/4/312.
- Cantarella, J., D. D. Turck, and H. Gluck. 2001. The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics. J. Math. Phys. 42(2):876-905. doi: 10.1063/1.1329659.
- Moore, E. H. 1920. On the reciprocal of the general algebraic matrix. B. Am. Math. Soc. 26(9):394-395. doi: 10.1090/S0002-9904-1920-03322-7.
- Penrose, R. 1955. A generalized inverse for matrices. Math. Proc. Cambridge 51(3):406-413. doi: 10.1017/S0305004100030401.
- Pascarella, A., and A. Sorrentino. 2011. Statistical approaches to the inverse problem. Magnetoencephalography. Ed. E.W. Pang. InTech. 93-112. Available at: http://www.intechopen.com/books/magnetoencephalography/statistical- approaches-to-the-inverse-problem (accessed March 26, 2018).
- Idier, J. 2008. Bayesian approach to inverse problems. New Jersey, NJ: Wiley. 392 p. doi: 10.1002/9780470611197.
- Lopez, J. D. 2012. MEG/EEG brain imaging based on Bayesian algorithms for ill- posed inverse problems. Manizales: Universidad Nacional de Colombia. PhD Thesis. 75 p.
- Grech, R., T. Cassar, J. Muscat, K. Camilleri, S. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis, and B. Vantrumste. 2008. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5(1): 1-25. doi: 10.1186/1743-0003-5-25.
- Liu, J. S., and R. Chen. 1998. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443):1032-1044. doi: 10.2307/2669847.
- Hansen, P. C. 2000. The L-curve and its use in the numerical treatment of inverse problems. Computational inverse problems in electrocardiology. Southampton, U.K.: WIT Press. 119-142.
- Phillips, C., M. Rugg, andK. Friston. 2002. Systematic regularization of linear inverse solutions of the EEG source localization problem. NeuroImage 17(1):287-301. doi: 10.1006/nimg.2002.1175.
- Bishop, C. M. 2006. Pattern recognition and machine learning. New York, NY: Springer. 738 p.
- Hamalainen, M.S., and R.J. Ilmoniemi. 1994. Interpreting magnetic fields of the brain: Minimum norm estimates. Biomed. Eng. 32(1):35-42. doi: 10.1007/ BF02512476.
- Pascual-Marqui, R., C. M. Michel, and D. Lehmann. 1994. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18(1):49-65. doi: 10.1016/0167-8760(84)90014-X.
- Sekihara, K., S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita. 2001. Reconstructing spatio-temporal activities of neural sources using an MEG vector beam- former technique. IEEE T. Bio-Med. Eng. 48(7):760-771. doi: 10.1109/10.930901.
- Wipf, D., and S. Nagarajan. 2009. A unified Bayesian framework for MEG/EEG source imaging. Neuroimage. 44(3):947-966. doi: 10.1016/ j .neuroimage .2008.02.059.
- Casella, G. 1985. An introduction to empirical Bayes data analysis. Am. Stat. 39(2):83- 87. doi: 10.2307/2682801.
- Friston, K., J. Mattout, N. Trujillo-Barreto, J. Ashburner, and W. Penny. 2007. Variational free energy and the laplace approximation. NeuroImage 34(1):220-234. doi: 10.1016/j. neuroimage .2006.08.035.
- Friston, K., L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips, N. Trujillo- Barreto, R. Henson, G. Flandin, and J. Mattoutf. 2008. Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39(3): 1104-1120. doi: 10.1016/ j.neuroimage.2007.09.048.
- Litvak, V., and K. Friston. 2008. Electromagnetic source reconstruction for group studies. Neuroimage 42(4):1490-1498. doi: 10.1016/j.neuroimage.2008.06.022.
- Kozunov, V. V., and A. Ossadtchi. 2015. GALA: Group analysis leads to accuracy, a novel approach for solving the inverse problem in exploratory analysis of group MEG recordings. Front. Neurosci. Switz. 9(107): 1-20. doi: 10.3389/fnins.2015.00107.
- Uutela, K., M. Hamalainen, and E. Somersalo. 1999. Visualization of magnetoen- cephalographic data using minimum current estimates. Neuroimage 10(2): 173-180. doi: 10.1006/nimg. 1999.0454.
- Zou, H., andT. Hastie. 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. 67(2):301-320. doi: 10.1111/j.1467-9868.2005.00503.x.
- Tatarchuk, A., V. Mottl, A. Eliseyev, and D. Windridge. 2008. Selectivity supervision in combining pattern-recognition modalities by feature- and kernel-selective Support Vector Machines. 19th Conference (International) on Pattern Recognition Proceedings. Tampa, FL: IEEE. 324-328. doi: 10.1109/ICPR.2008.4761781.
- Tatarchuk, A., E. Urlov, V. Mottl, and D. Windridge. 2010. A support kernel machine for supervised selective combining of diverse pattern-recognition modalities. 9th Workshop (International) on Multiple Classifier Systems Proceedings. Cairo, Egypt: Springer. 165-174.
- Tellen, S. 2013. Sparse reconstruction and realistic head modeling in EEG/MEG. Munster: University of Munster. PhD Thesis. 140 p.
- Solin, A., P. Jylanki, J. Kauramaki, et al. 2016. Regularizing solutions to the MEG inverse problem using space-time separable covariance functions. Unpublished. 25 p. Available at: https://arxiv.org/abs/1604.04931 (accessed March 26, 2018)
[+] About this article
Title
PROBABILISTIC APPROACH TO SOLVING THE MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM
Journal
Systems and Means of Informatics
Volume 28, Issue 1, pp 35-52
Cover Date
2018-03-30
DOI
10.14357/08696527180103
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bayesian approach; magnetoencephalography; inverse problem; ill-posed problem; a posteriori maximum estimation; optimization methods
Authors
M. B. Goncharenko and T. V. Zakharova ,
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|