Systems and Means of Informatics
2017, Volume 27, Issue 4, pp 109-121
EFFECTIVE USE OF PROGRAMMABLE GRAPHICS PROCESSING UNITS IN PROBLEMS OF MOLECULAR DYNAMICS SIMULATION
- S. A. Semenov
- D. L. Reviznikov
Abstract
Graphics processing units (GPU) make it possible to expand significantly the capabilities of computing systems. The article discusses the use of graphics processors in problems of molecular dynamics modeling with a complex particle interaction potential. In order to improve the performance of calculations on the GPU, the following methods are implemented: reduction of the number of requests to the global memory; reduction of the number of branches; selection of the optimal load of multiprocessors; and use of equivalent mathematical expressions that perform functions for faster code execution. Parallel execution of the program is realized by partitioning the space into cells, compiling and updating the list of neighboring atoms in order to minimize memory collisions, distribution of operations over computational flows, and allocation of additional memory for creating copies of the coordinates of interacting atoms. Several examples illustrating the computational complexity of the algorithms are considered.
[+] References (20)
- Allen, M.P., and D.J. Tildesley. 1987. Computer simulation of liquids. Oxford: Clarendon Press. 385 p.
- Verlet, L. 1967. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159:98-103. doi: 10.1103/ PhysRev.159.98.
- Brenner, D.W., O. A. Shenderova, and J.A. Harrison. 2002. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mat. 14:783-802.
- Anderson, J.A., C. D. Lorenz, and A. Travesset. 2008. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10):5342-5359.
- Grand, S.L., A.W. Gotz, and R. C. Walker. 2013. SPFP: Speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 184(2):374-380.
- Plimpton, S. 1995. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1): 1-19.
- Brown, W. M., P. Wang, S. J. Plimpton, and A.N. Tharrington. 2011. Implementing molecular dynamics on hybrid high performance computers-short range forces. Comput. Phys. Commun. 182 (4): 898-911.
- Tang, Y.-H., and G. E. Karniadakis. 2014. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications. Comput. Phys. Commun. 185(11):2809-2822.
- Pall, S., and B. Hess. 2013. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184(12):2641-2650.
- Stone, J. E., J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten. 2007. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28(16):2618-2640.
- Phillips, J., J. Stone, and K. Schulten. 2008. Adapting a message-driven parallel application to GPU-accelerated clusters. ACM/IEEE Conference on Supercomputing Proceedings. Piscataway, NJ: IEEE Press. 1-9.
- Eastman, P., M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, and V. S. Pande. 2013. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9(1):461 -469.
- Harvey, M.J., G. Giupponi, and G. D. Fabritiis. 2009. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5 (6): 1632-1639.
- Deng, H., X. Li, X. Liu, and G. Wang. 2011. Accelerating the near non-bonded force computation in desmond with graphic processing units. 40th Conference (International) on Parallel Processing Workshops. IEEE. 191-198.
- Roehm D., and A. Arnold. 2012. Lattice Boltzmann simulations on GPUs with ESPResSo. Eur. Phys. J. Spec. Top. 210(1):89-100.
- Friedrichs, M. S., P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Be- berg, D.L. Ensign, C. M. Bruns, and V. S. Pande. 2009. Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30(6):864-872.
- Tredak, P., W. R. Rudnickib, and J.A. Majewskia. 2016. Efficient implementation of the many-body reactive bond order (REBO) potential on GPU. J. Comput. Phys. 321 (15):556-570.
- Boreskov, A. V., A. A. Kharlamov, N. D. Markovskiy, D. N. Mikushin, E. V. Mor- tikov, A. A. Myl'tsev, N. A. Sakharnykh, and V. A. Frolov. 2012. Parallel'nye vy- chisleniya na GPU. Arkhitektura i programmnaya model' CUDA [Parallel computing on GPU. Architecture and CUDA programming model]. Moscow: MSU Publs. 336 p.
- Reviznikov, D. L., and S. A. Semenov. 2013. Osobennosti molekulyarno-dinami- cheskogo modelirovaniya nanosistem na graficheskikh processorakh [Peculiarities of molecular dynamic modeling of nanostructures on graphical processors]. Programmnaya inzheneriya [Software Engineering] 2:31-35.
- Eletskii, A.V., I.M. Iskandarova, A. A. Knizhnik, and D.N. Krasikov. 2011. Graphene: Fabrication methods and thermophysical properties. Phys. Usp. 54(3):227- 258.
[+] About this article
Title
EFFECTIVE USE OF PROGRAMMABLE GRAPHICS PROCESSING UNITS IN PROBLEMS OF MOLECULAR DYNAMICS SIMULATION
Journal
Systems and Means of Informatics
Volume 27, Issue 4, pp 109-121
Cover Date
2017-10-30
DOI
10.14357/08696527170408
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
high-performance computing; graphics processors; shared memory; molecular dynamics simulation; nanomaterials
Authors
S. A. Semenov and D. L. Reviznikov ,
Author Affiliations
Moscow Aviation Institute (National Research University), 4 Volokolamskoe Av., Moscow 125993, Russian Federation
A. A. Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
|