Systems and Means of Informatics
2017, Volume 27, Issue 4, pp 80-94
OPTIMAL INVENTORY CONTROL OF CONTINUOUS PRODUCT IN REGENERATION THEORY WITH DETERMINATE DELAY OF THE DELIVERY AND THE PERIOD OF REAL REPLENISHMENT
- P. V. Shnurkov
- E. Yu. Pimenova
Abstract
The problem of inventory control in the stochastic model of regeneration is investigated. The purpose is to find a theoretical solution of the optimal control problem. To solve the problem, the authors have found the distribution function of a random time from the replenishment moment till the next order which determines the optimal replenishing product plan. It is proved that the initial problem solution exists and it is attained on the degenerate probability distribution. In addition, the optimal deterministic value of the control parameter is the global extreme point of a function which was expressed in an analytical representation. The existence of deterministic optimal control assertion was proved. The authors have specified the analytical conditions on the initial model characteristics under which the optimal control exists.
[+] References (22)
- Shnurkov, P. V., andR.V. Mel'nikov. 2006. Optimal'noe upravlenie zapasom nepre- ryvnogo produkta v modeli regeneratsii [Optimal control of a continuous product inventory in the regeneration model]. Obozrenie prikladnoy i promyshlennoy matemati-
ki [Rev. Appl. Ind. Math.] 13(3):434-452.
- Shnurkov, P. V., and R. V. Mel'nikov. 2008. Analysis of the problem of continuous- product inventory control under deterministic lead time]. Automat. Rem. Contr.
69(10): 1734-1751.
- Mel'nikov, R. V. 2010. Issledovaniye problem upravleniya zapasom v stokhasticheskoy modeli regeneratsii [Research inventory control problems in stochastic recovery model]. Moscow: MGIEM. PhD Thesis. 133 p.
- Ryzhikov, Yu. I. 2001. Teoriya ocheredey i upravlenie zapasami [Queuing theory and inventory management]. St. Petersburg: Peter. 235 p.
- Porteus, E.L. 2002. Foundations of stochastic inventory theory. Stanford, CA: Stanford Business Book. 299 p.
- Nino-Mora, J. 2006. Restless bandit marginal productivity indices, diminishing returns, and optimal control of make-to-order/make-to-stock M/G/l queues. Math. Oper. Res. 31(1 ):50-84.
- Kumar, S. R., and C. Elango. 2010. Semi Markov decision processes for service facility systems with perishable inventory. Int. J. Comput. Appl. 9(4): 14-17.
- Snurkov, P. V., and A. V. Ivanov. 2015. Analysis of a discrete semi-Markov model of continuous inventory control with periodic interruptions of consumption. Discrete Math. 25(1):59-67.
- Ivanov, A.V. 2014. Analiz diskretnoy polumarkovskoy modeli upravleniya zapasom nepreryvnogo produkta pri periodicheskom prekrashchenii potrebleniya [Analysis of a discrete semi-Markov control model of continuous product inventory in a periodic cessation of consumption]. Moscow: Moscow: National Research University Higher School of Economics. PhD Thesis. 120 p.
- Shnurkov, P. V. 2016. Solution of the unconditional extremum problem for a linear- fractional integral functional on a set of probability measures. Dokl. Math. 94(2):550- 554.
- Shnurkov, P. V., A. K. Gorshenin, and V. V. Belousov. 2016. Analiticheskoe reshenie zadachi optimal'nogo upravleniya polumarkovskim protsessom s konechnym mnozh- estvom sostoyaniy [An analytic solution of the optimal control problem for a semi- Markov process with a finite set of states]. Informatika i ee Primeneniya - Inform. Appl. 10(4):72-88.
- Borovkov, À. À. 2009. Teoriya veroyatnostey [Probability theory]. Moscow: Librokom. 656 p.
- Klimov, G. P. 2011. Teoriya massovogo obsluzhivaniya [Queuing theory]. Moscow: MSU Publs. 312 p.
- Rykov, V.V., and D.V. Kozyrev. 2016. Osnovy teorii massovogo obsluzhivaniya [Foudation of queuing theory]. Moscow: Infra-M. 223 p.
- Barzilovich, E.Yu., and V. A. Kashtanov. 1971. Nekotorye matematicheskie voprosy teorii obsluzhivaniya slozhnykh sistem [Some mathematical questions in theory of complex systems maintenance]. Moscow: Sovetskoe radio. 272 p.
- Gnedenko, B. V., ed. 1983. Voprosy matematicheskoy teorii nadezhnosti [Questions of mathematics reliability theory]. Moscow: Radio and communication. 376 p.
- Shnurkov, P.V., and E.Yu. Pimenova. 2017. Prilozhenie k stat'e: Optimal'noe upravlenie zapasom nepreryvnogo produkta v skheme regeneratsii s determinirovannoy zaderzhkoy postavki i periodom real'nogo popolneniya [Appendix to article: Optimal inventory control of continuous product in regeneration theory with determinate delay of the delivery and the period of real replenishment]. 10 p. Available at: http://ipiran.ru/announce/shnurkov.pdf (accessed September 26, 2017).
- Aleksandrov, P. S. 2010. Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu [Intro- ductionto the theory of sets and general topology]. 2nd ed. SPb.: Lan'. 364 p.
- Kolmogorov, A.N., and S.V. Fomin. 1999. Elements of the theory of functions and functional analysis. Waltham, MA: Courier Corp. 288 p.
- Mine, H., and S. Osaki. 1970. Markovian decision processes. New York, NY: Elsevier. 142 p.
- Luque-Vasquez, F., and O. Hernandez-Lerma. 1999. Semi-Markov control models with average costs. Appl. Math. 26(3):315-331.
- Vega-Amaya, O., and F. Luque-Vasquez. 2000. Sample-path average cost optimality for semi-Markov control processes on Borelspaces: Unbounded costs and mean holding times. Appl. Math. 27(3):343-367.
[+] About this article
Title
OPTIMAL INVENTORY CONTROL OF CONTINUOUS PRODUCT IN REGENERATION THEORY WITH DETERMINATE DELAY OF THE DELIVERY AND THE PERIOD OF REAL REPLENISHMENT
Journal
Systems and Means of Informatics
Volume 27, Issue 4, pp 80-94
Cover Date
2017-10-30
DOI
10.14357/08696527170406
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
optimal control in stochastic systems; inventory management; controlled regenerating process
Authors
P. V. Shnurkov and E. Yu. Pimenova
Author Affiliations
National Research University Higher School of Economics, 34 Tallinskaya Str., Moscow 123458, Russian Federation
|