Systems and Means of Informatics
2017, Volume 27, Issue 4, pp 16-36
ANALYTICAL MODELING OF NORMAL PROCESSES IN STOCHASTIC SYSTEMS WITH INTEGRAL NONLINEARITIES (III)
Abstract
Methodological and algorithmical support for analytical modeling of normal (Gaussian) processes in differential stochastic systems with probabilistic integral nonlinearities (IN) based on Pearson distributions (PD) and stable probabilistic distributions (SPD) is presented. Support is based on the methods of statistical linearization (MSL) and normal approximation (MNA). Probabilistic IN were approximated by power expansions. The MSL and MNA coefficients for probabilistic IN based on PD and SPD are given. The MSL coefficients for incomplete beta-function and F-distribution are considered. Some SPD types are described. Test examples with accuracy estimation are given. Results may be generalized as new types of probabilistic IN (multichannel angular, spherical, etc.) and various numerical approximations (polynomial, rational, fractional rational, orthogonal, asymptotic, and iterative).
[+] References (11)
- Sinitsyn, I. N. 2017. Analiticheskoe modelirovanie normal'nykh protsessov v stokhasti- cheskikh sistemakh s integral'nymi nelineynostyami (I) [Analytical modeling of normal processes in stochastic systems with integral nonlinearities (I)]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27 (2): 3- 15.
- Sinitsyn, I. N. 2017. Analiticheskoe modelirovanie normal'nykh protsessov v stokhasti- cheskikh sistemakh s integral'nymi nelineynostyami (II) [Analytical modeling of normal processes in stochastic systems with integral nonlinearities (II)]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27(3):23-36.
- Prokhorov, A. V. 1984. Krivye Pirsona [Pearson curves]. Matematicheskaya entsiklo- pediya [Mathematical encyclopedia]. Moscow: Sovetskaya entsiklopediya. 4:288-290.
- Rogozin, B.A. 1984. Ustoychivoe raspredelenie [Stabil distribution]. Matematicheskaya entsiklopediya [Mathematical encyclopedia]. Moscow: Sovetskaya entsiklopediya. 4:557-558.
- Pugachev, V.S., and I.N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, New York, NY: Jonh Wiley. 549 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I.N., and V. I. Sinitsyn. 2013. Lektsii po normal'noy i ellipsoidal'noy approksimatsii raspredeleniy v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal approximation in stochastic systems]. Moscow: TORUS PRESS. 488 p.
- Gradshteyn, I. S., andI. M. Ryzhik. 1963. Tablitsy integralov, summ, ryadov i proizve- deniy [Tables of integrals, sums, series, and products]. Moscow: GIFML. 1100 p.
- Abramovich, M., and I. Stigan, eds. Spravochnik po spetsial'nym funktsiyam [Computing of functions: Handbook]. Moscow: Nauka. 1979. 832 p.
- Popov, B.A., and G. S. Tesler. 1984. Vychislenie funktsiy na EVM: Spravochnik [Handbook for special functions]. Kiev: Naukova Dumka. 599 p.
- Sinitsyn, I. N. 2013. Parametricheskoe statisticheskoe i analiticheskoe modelirovanie raspredeleniy v nelineynykh stokhasticheskikh sistemakh na mnogoobraziyakh [Parametric statistical and analytical modeling of distributions in stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 7 (2): 4- 16.
[+] About this article
Title
ANALYTICAL MODELING OF NORMAL PROCESSES IN STOCHASTIC SYSTEMS WITH INTEGRAL NONLINEARITIES (III)
Journal
Systems and Means of Informatics
Volume 27, Issue 4, pp 16-36
Cover Date
2017-10-30
DOI
10.14357/08696527170402
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
analytical modeling; x2-distribution; exponential distribution; gamma-distribution; Hermite polynomial and power expansions; method of normal approximation (MNA); method of statistical linearization (MSL); probabilistic integral nonlinearities (PIN)
Authors
I. N. Sinitsyn
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|