Systems and Means of Informatics
2017, Volume 27, Issue 2, pp 3-15
ANALYTICAL MODELING OF NORMAL PROCESSES IN STOCHASTIC SYSTEMS WITH INTEGRAL NONLINEARITIES (I)
Abstract
General methodological and algorithmical support for analytical modeling of normal processes in differential stochastic systems (StS) with integral nonlinearities (IN) and Wiener and Poisson noises is presented. Support is based on the methods of normal approximation (MNA) and of statistical linearization (MSL). Integral nonlinearities were approximated by power and Hermite series.
The MSL and MNA coefficients for IN described by Laplace, Fresnel integrals, and sine integrals are given. Necessary information about IN is given and the software tool StS-Analysis.2017 is described. Stochastic dynamic of an integral oscillator is used as a test example. Some generalizations are mentioned.
[+] References (10)
- Sinitsyn, I.N. 2015. Analiticheskoe modelirovanie raspredeleniy v dinamicheskikh sistemakh s besselevymi nelineynostyami [Analytical modeling of distributions in dynamical systems with Bessel nonlinearities]. Informatika i ee Primeneniya - Inform. Appl. 9(4):37-47.
- Sinitsyn, I.N. 2016. Analiticheskoe modelirovanie normal'nykh protsessov v stokha- sticheskikh sistemakh so slozhnymi besselevymi nelineynostyami drobnogo poryadka [Analytical modeling of normal processes in stochastic systems with complex Bessel nonlinearities]. Informatika i ee Primeneniya - Inform. Appl. 10(3): 25-3 5.
- Sinitsyn, I.N. 2017. Analiticheskoe modelirovanie normal'nykh protsessov v sto- khasticheskikh sistemakh s ellipticheskimi nelineynostyami [Analytical modeling of normal processes in stochastic systems with elliptic nonlinearities]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 27 (1): 3-19.
- Gradshteyn, I. S., andI. M. Ryzhik. 1963. Tablitsy integralov, summ, ryadov i proizve- deniy [Tables of integrals, sums, and series]. Moscow: GIFML. 1100 p.
- Abramovich, M., and I. Stigan, eds. Spravochnik po spetsial'nym funktsiyam [Computing of functions: Handbook]. Moscow: Nauka. 1979. 832 p.
- Popov, B.A., and G. S. Tesler. 1984. Vychislenie funktsiy na EVM: Spravochnik [Handbook for special functions]. Kiev: Naukova Dumka. 599 p.
- Pugachev, V. S., and I. N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, New York, NY: Jonh Wiley. 549 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I.N., and V.I. Sinitsyn. 2013. Lektsii po normal'noy i ellipsoidal'noy approksimatsii raspredeleniy v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal approximation in stochastic systems]. Moscow: TORUS PRESS. 488 p.
- Sinitsyn, I.N. 2013. Parametricheskoe statisticheskoe i analiticheskoe modelirovanie raspredeleniy v nelineynykh stokhasticheskikh sistemakh na mnogoobraziyakh [Parametric statistical and analytical modeling of distributions in stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 7(2):4-16.
[+] About this article
Title
ANALYTICAL MODELING OF NORMAL PROCESSES IN STOCHASTIC SYSTEMS WITH INTEGRAL NONLINEARITIES (I)
Journal
Systems and Means of Informatics
Volume 27, Issue 2, pp 3-15
Cover Date
2017-05-30
DOI
10.14357/08696527170201
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
analytical modeling; Fresnel integral; Hermite polynomial power expansion; integral sine; Laplace function; method of normal approximation (MNA); method of statistical linearization (MSL)
Authors
I. N. Sinitsyn
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|