Systems and Means of Informatics
2016, Volume 26, Issue 1, pp 44-61
THE EXPERIMENTAL ANALYSIS OF THE METHOD OF CLUSTERING AND RANKING OF MULTIDIMENSIONAL DATA USING THE KOHONEN NEURAL NETWORK
- V. I. Anikin
- O. V. Anikina
- A. A. Karmanova
Abstract
The paper proposes a methodology of clustering and ranking data using the Kohonen neural network based on space-correlation properties of a training sample regardless of the network learning algorithm. The possibility of applying the promising method of linear transformation of training samples coordinates for clustering weakly correlated spatially inseparable data is shown experimentally.
The paper demonstrates the usage of ranking to highlight the border instances and define the level of closeness to neighborhood cluster, which makes it possible to solve the problem of finding cluster boundaries in spatially inseparable data. The necessity of the multilayer clustering is justified in the case of uneven spatial data distribution. The method of clustering and ranking is illustrated by the example of analysis of financial statements empirical data. The technique is applicable to samples of small and medium size.
[+] References (11)
- Kokhonen, T., eds. 2008. Samoorganizuyushchiesya karty [Self-organizing maps]. Moscow: BINOM. Laboratoriya znaniy. 655 p.
- Estivill-Castro, V. 2002. Why so many clustering algorithms. ACM SIGKDD Explorations Newsletter 4(1):65-75.
- Roy, S., and D.K. Bhattacharyya. 2005. An approach to find embedded clusters using density based techniques. Distributed computing and Internet technology. Ed. G. Chakraborty. Lectire notes in computer science ser. Springer Verlag. 3816:523-535.
- Kriegel, H., H. Kriegel, P. Kroger, J. Sander, and A. Zimek. 2011. Density-based clustering. WIREs Data Mining Knowledge Discovery 1 (3):231 -240.
- Witten, I. H., F. Eibe, and M. A. Hall. 2011. Data mining: Practical machine learning tools and techniques. 3rd ed. Elsevier. 700 p.
- Anikin, V.I., and A. A. Karmanova. 2014. Obuchenie iskusstvennoy neyronnoy seti Kokhonena kletochnym avtomatom [Training of artificial Kohonen neural network by cellular automaton]. Informatsionnye Tekhnologii [Information Technology] 11:73-80.
- Anikin, V.I., and A. A. Karmanova. 2015. Modelirovanie i issledovanie kletochnoy neyronnoy seti Kokhonena v elektronnykh tablitsakh [Simulation and research of Kohonen cellular neural network using spreadsheet]. XVII Vseross. Nauch. -Tekhnich. Konf. "Neyroinformatika-2015" [17th All-Russian Conference "Neiroinformatics- 2015" Proceedings]. Moscow: MIFI. 2:118-127.
- Deductor: Analiticheskaya platforma [Deductor Studio Analytical Platform]. Available at: www.basegroup.ru (accessed March 2, 2016).
- Anikin, V.I., and O. V. Anikina. 2013. Vizual'noe tablichnoe modelirovanie kletoch- nykh avtomatov v Microsoft Excel [Visual spreadsheet simulation of cellular automata in Microsoft Excel]. Togliatti: PVGUS. 324 p.
- Ultsch, A. 2003. U*-matrix: A tool to visualize clusters in high dimensional data. Department of Computer Science, University of Marburg. Technical Report No. 36. 12 p. Available at: http://www.uni-marburg.de/fb12/datenbionik/pdf/pubs/2003/ ultsch03ustar (accessed March 2, 2016).
- Andreev, A.M., D.V. Berezkin, V.V. Morozov, and K.V. Simakov. 2008. Metod klasterizatsii dokumentov tekstovykh kollektsiy i sinteza annotatsiy klasterov [Method of the clustering of document collections and clusters annotations synthesis]. X Vseross. Nauch. Konf. RCDL [10th All-Ruaaian Conference on RCDL Proceedings]. Dub- na: OIYI. 220-229. Available at http://rcdl2008.jinr.ru/pdf/220_229_paper26.pdf (accessed on March 2, 2016).
[+] About this article
Title
THE EXPERIMENTAL ANALYSIS OF THE METHOD OF CLUSTERING AND RANKING OF MULTIDIMENSIONAL DATA USING THE KOHONEN NEURAL NETWORK
Journal
Systems and Means of Informatics
Volume 26, Issue 1, pp 44-61
Cover Date
2016-04-30
DOI
10.14357/08696527160104
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
multidimensional clustering; ranking; Kohonen neural network; cellular automaton; linear transformation; correlation matrix
Authors
V. I. Anikin , O. V. Anikina , and A. A. Karmanova
Author Affiliations
Volga State Service University, 4 Gagarina Str., Togliatti 445017, Russian Federation
Togliatti State University, 14 Belorusskaya Str., Togliatti 445667, Russian Federation
LLC "NetCraker," 4b Frunze Str., Togliatti 445037, Russian Federation
|