Systems and Means of Informatics
2015, Volume 25, Issue 4, pp 52-64
METRIC TIME SERIES CLASSIFICATION USING DYNAMIC WARPING RELATIVE TO CENTROIDS OF CLASSES
- A. V. Goncharov
- M. S. Popova
- V. V. Strijov
Abstract
The paper discusses the problem of time series classification in the case of several classes. The proposed classification model uses the matrix of distance between time series. This distance measure is defined by the dynamic time warping method. The dimension of the distance matrix is very high. The paper introduces centroids of each class as reference objects used to decrease this dimension. The distance matrix with lower dimension describes the distance between all objects and reference objects. This method is used for human activity recognition. The quality of classification on data from a mobile accelerometer is investigated. This metric algorithm of classification is compared with the separating classification algorithm.
[+] References (18)
- Kwapisz, J.R., G. M. Weiss, and S. Moore. 2010. Activity recognition using cell phone accelerometers. SIGKDD Explorations 12(2):74-82.
- Kwapisz, J. R. 2010. Data from accelerometer. Available at: http://sourceforge. net/p/mlalgorithms/TSLearning/data/preprocessedJarge.csv (accessed April 21,
2014).
- Hoseini-Tabatabaei, S. A., A. Gluhak, andR. Tafazolli. 2013. A survey on smartphone- based systems for opportunistic user context recognition. ACM Comput. Surv. 45(3):27.
- Kuznecov, M.P. Priznakovaya klassifikatsiya vremennykh ryadov [Time series feature-based classification]. Available at: https://sourceforge.net/p/mlalgorithms/ code/HEAD/tree/TSLearning/doc/TSClassification/TSClassification.pdf (accessed June 18, 2015).
- Popova, M.S., and V.V. Strijov. 2015. Vybor optimal'noy modeli klassifikatsii fizicheskoy aktivnosti po izmereniyam akselerometra [Selection of optimal physical activity classification model using measurements of accelerometer]. Informatika i ee Primeneniya - Inform. Appl. 9(1):79-89.
- Faloutsos, C., M. Ranganathan, and Y. Manolopoulos. 1994. Fast subsequence matching in time-series database. ACM Conference (International) on Management of Data (SIGMOD). Minneapolis, MN. 419-429.
- Berndt, D. J., and J. Clifford. 1994. Using dynamic time warping to find patterns in time series. Workshop on Knowledge Discovery in Databases (KDD Workshop). Seattle, WA. 359-370.
- Keogh, E.J., and C.A. Ratanamahatana. 2005. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3):358-386.
- Vlachos, M., D. Gunopulos, and G. Kollios. 2002. Discovering similar multidimensional trajectories. IEEE Conference (International) on Data Engineering (ICDE). San Jose, CA. 673-684.
- Chen, L., and R.T. Ng. 2004. On the marriage of lp-norms and edit distance. Very Large Data Bases (VLDB) Conference. Toronto, Ontario, Canada. 792-803.
- Chen, L., M.T. Ozsu, and V. Oria. 2005. Robust and fast similarity search for moving object trajectories. ACM Conference (International) on Management of Data (SIGMOD). Baltimore, MD. 491-502.
- Frentzos, E., K. Gratsias, and Y. Theodoridis. 2007. Index-based most similar trajec-tory search. IEEE Conference (International) on Data Engineering (ICDE). Istanbul, Turkey. 816-825.
- Morse, M. D., and J. M. Patel. 2007. An efficient and accurate method for evaluating time series similarity. ACM Conference (International) on Management of Data (SIGMOD). Beijing, China. 569-580.
- Chen, Y., M. A. Nascimento, B. C. Ooi, and A. K. H. Tung. 2007. SpADe: On shape- based pattern detection in streaming time series. IEEE Conference (International) on Data Engineering (ICDE). Istanbul, Turkey. 786-795.
- Scheuermann, P., X. Wang, H. Ding, G. Trajcevski, and E. Keogh. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Very Large Data Bases (VLDB) Conference. Auckland, New Zealand. 1542-1552.
- Keogh, E. J., and M. J. Pazzani. 1999. Scaling up dynamic time warping to massive datasets. Principles of data mining and knowledge discovery. Eds. J. M. Zytkow and J. Rauch. Lecture notes in artificial intelligence ser. Berlin-Heidelberg: Springer- Verlag. 1704:1-11.
- Salvador, S., and P. Chan. 2004. Fastdtw: Toward accurate dynamic time warping in linear time and space. 3rd SIGKDD Workshop on Mining Temporal and Sequential Data (KDD/TDM). Seattle, WA. 11.
- Goncharov, A.V. Programmnaya realizatsiya [Program realization]. Available at: http: //sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Goncharov2015 MetricClassification/code/main.m (accessed April 20, 2015).
[+] About this article
Title
METRIC TIME SERIES CLASSIFICATION USING DYNAMIC WARPING RELATIVE TO CENTROIDS OF CLASSES
Journal
Systems and Means of Informatics
Volume 25, Issue 4, pp 52-64
Cover Date
2015-09-30
DOI
10.14357/08696527150404
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
metric classification; dynamic time warping; time series classification; centroid; distance function
Authors
A. V. Goncharov , M. S. Popova ,
and V. V. Strijov
Author Affiliations
Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700, Russian Federation
Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
|