Systems and Means of Informatics
2015, Volume 25, Issue 3, pp 24-43
MOMENTS METHODS FOR ANALYTICAL MODELING OF STOCHASTIC SYSTEMS ON MANIFOLDS
Abstract
Problems of accuracy and sensitivity estimation for algorithms of analytical modeling methods (AMM) based on one- and multidimensional initial moments methods (IMM) and central moments method (CMM) in stochastic systems on manifolds (MStS) with Wiener and Poisson noises are considered.
For typical reliability and security problems accuracy and sensitivity, equations for AMM are given. Problems of reduction of equations for IMM and CMM are discussed. The results are the basis of symbolic software tools in MATLAB-MAPLE. A test example for scalar MStS with cubic nonlinearity and multiplicative Gaussian noise is given. Some generalizations are presented.
[+] References (11)
- Pugachev, V.S., and I.N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, NY: Jonh Wiley. 549 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I.N. 2013. Parametricheskoe statisticheskoe i analiticheskoe modelirovanie raspredeleniy v nelineynykh stokhasticheskikh sistemakh na mnogoobraziyakh [Parametric statistical and analytical modeling of distributions in nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform Appl. 7(2):4-16.
- Sinitsyn, I.N. 2015. Analiticheskoe modelirovanie raspredeleniy metodom ortogonal'nykh razlozheniy v nelineynykh stokhasticheskikh sistemakh na mnogoobraziyakh [Analytical modeling in stochastic systems on manifolds based on orthogonal expansions]. Informatika i ee Primeneniya - Inform Appl. 9(3):17-24.
- Sinitsyn, I. N. 2015. Primenenie ortogonal'nykh razlozheniy dlya analiticheskogo modelirovaniya mnogomernykh raspredeleniy v nelineynykh stokhasticheskikh sistemakh na mnogoobraziyakh [Applications of orthogonal expansions for analytical modeling of multidimensional densities in stochsatic systems on manifolds]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 25(3):4-23.
- GOST 23743-88. Izdeliya aviatsionnoy tekhniki. Nomenklatura pokazateley bezopasnosti poleta, nadezhnosti, kontroleprigodnosti, ekspluatatsionnoy i remontnoy tekhno- logichnosti [Aircraft products. Nomenclature of flight safety, reliability, testability, operational and repair manufacturability].
- Bolotin, V.V. 1998. Teoriya nadezhnosti mashin [Theory of machine realiability]. Mashinostroenie. Entsiklopetsiya [Mechanical engineering Encyclopedia]. Nadezhnost' mashin [Reability of machines]. Moscow: Mashinostroenie. IV-3:11-66.
- Aleksandrovskaya, L.N., I. Z. Aronov, V.I. Kruglov, et al. 2008. Bezopasnost' i nadezhnost' tekhnicheskikh sistem [Security and reliability of technical systems]. Moscow: Universitetskaya Kniga, Logos. 376 p.
- Watanabe, S., and N. Ikeda. 1981. Stochastic differential equations and diffusion processes. Amsterdam-Oxford-New York: North-Holland Publishing Co.; Tokyo: Kodansha Ltd. 476 p.
- Evlanov, A.G., and V. M. Konstantinov. 1976. Sistemy so slozhnymi parametrami [Systems with random parameters]. Moscow: Nauka. 568 p.
- Krasovskii, A. A., ed. 1987. Spravochnik po teorii avtomaticheskogo upravleniya [Handbook for automatic control]. Moscow: Nauka. 712 p.
[+] About this article
Title
MOMENTS METHODS FOR ANALYTICAL MODELING OF STOCHASTIC SYSTEMS ON MANIFOLDS
Journal
Systems and Means of Informatics
Volume 25, Issue 3, pp 24-43
Cover Date
2015-09-30
DOI
10.14357/08696527150302
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
accuracy IMM and CMM equations; analytical modeling method (AMM); central moments method (CMM); Hermite polynomials; initial moments method (IMM); one- and multidimensional distribution density; sensitivity IMM and CMM equations; stochastic system on manifold (MStS)
Authors
I.N. Sinitsyn
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science
and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|