Systems and Means of Informatics
2015, Volume 25, Issue 1, pp 142-154
LARGE CAPACITY OF RAILWAY CARGO TRANSPORTATION
FORECASTING
- R.K. Gazizullina
- M.M. Medvednikova
- V. V. Strijov
Abstract
The article is devoted to research of the algorithm of nonparametric
forecasting of railway cargo transportation capacity. The problem considered is
forecasting the number of wagons with various goods, following various routes.
The topology of the railway network is given | for all possible pairs of railway
lines, information about all blocks of wagons, which have moved from one line
to another, including the number of wagons in a block, the type of cargo, and
the date of the route, is provided. The algorithm, based on convolution of the
empirical density distribution of the values of time series with the loss function
is used for prediction. Previously, forecasting was carried out for each railway
junction separately. It is proposed to be improved by the quality of forecasting
predicting by pairs of lines instead of predicting departure of all wagons from the
given junction. The algorithm is illustrated by the daily data on transportation
of 38 types of cargo collected during a year and a half.
[+] References (16)
- Zatsarinnyi, A.A., and A.P. Shabanov. 2011. Metodicheskiy podkhod k upravleniyu
kachestvom informatsii v slozhnykh infokommunikatsionnykh proektakh [Methodolog-
ical approach to quality management of information in complex infocommunication
projects]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics
21(2):3-20.
- Sinitsyn, I. N., E.R. Korepanov, V.V. Belousov, V. S. Shorgin, I.V. Makarenkova, T.D. Konashenkova, E. S. Agafonov, and N.N. Semendyaev. 2011. Razvitie
komp'yuternoy podderzhki statisticheskikh nauchnykh issledovaniy sistem vysokoy
tochnosti i dostupnosti [Development of computer-aided statistical scientific support
for high precision and with high availability systems]. Sistemy i Sredstva Informatiki -
Systems and Means of Informatics 21(1):3-33.
- Sinitsyn, I. N., A. S. Shalamov, I.V. Sergeev, V. I. Sinitsyn, E.R. Korepanov,
V.V. Belousov, E. S. Agafonov, and V. S. Shorgin. 2012. Metody i sredstva analiza
i modelirovaniya stokhasticheskikh sistem integrirovannoy logisticheskoy podderzhki
[Analysis and modeling methods and tools for integrated logistic support of stochastic
systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics
22(2):3-28.
- Val'kov, A. S., E.M. Kozhanov, M.M. Medvednikova, and F. I. Khusainov. 2012.
Neparametricheskoe prognozirovanie zagruzhennosti sistemy zheleznodorozhnykh uzlov
po istoricheskim dannym [Nonparametric forecasting of railroad stations occupancy
according to historical data]. Mashinnoe Obuchenie i Analiz Dannykh [J. Machine
Learning Data Analysis] 4(1): 448-465.
- Koenker, R., and G. Bassett 1978. Regression quantiles. Econometrica 46(1):33-50.
- Postnikova, E. 2006.Kvantil'naya regressiya [Quantile regression]. Novosibirsk: NGU
[Novosibirsk: NSU]. 34 p.
- Cortez, P., M. Rotcha, and J. Neves. 2004. Evolving time series forecasting ARMA
models. J. Heuristics 10(4):419-429.
- Shumway, R.H., and D. S. Stoffer. 2006. Time series analysis and its applications
with R examples. Springer. 590 p.
- Tikhonov, E. 2006. Prognozirovanie v usloviyakh rynka [Forecasting in market conditions]. Nevinnomyssk. 221 p.
- Hardle, W. 1989. Applied nonparametric regression. New York -New Rochell -
Melbourne - Sydney: Cambridge University Press, 1989. 433 p.
- Shurygin, A.M. 2000. Prikladnaya stokhastika: Robastnost', otsenivanie, prognoz
[Applied stochastic: Robustness, estimation, forecast]. Moscow: Finansy i Statistika.
224 p.
- Lukashin, Y. P. 2003. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennykh ryadov [Adaptivemethods of short-termtime series forecasting].Moscow: Finansy
i Statistika. 416 p.
- Dzheffri, R. 2008. Neparametricheskaya ekonometrika: Vvodnyy kurs [Nonparametric
econometrics: An introductory course]. Kvantil' 7:56.
- Thiesing, F.M., and O. Vornberger. 1997. Forecating sales using neural networks.
Computational intelligence, theory and applications. Ed. B. Reusch. Lecture notes in
computer science ser. 1226:321-328.
- Gheyas, I.A., and L. S. Smith. 2009. Neural network approach to time series
forecasting.World Congress on Engineering Proceedings. 2:245-253.
- Scott,D.W. 1979.On optimal and data-based histograms. Biometrika 66(3):605-610.
[+] About this article
Title
LARGE CAPACITY OF RAILWAY CARGO TRANSPORTATION
FORECASTING
Journal
Systems and Means of Informatics
Volume 25, Issue 1, pp 142-154
Cover Date
2013-11-30
DOI
10.14357/08696527150109
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
forecasting; nonparametric method; railroad station occupancy; loss
function; empirical distribution; compression
Authors
R.K. Gazizullina , M.M. Medvednikova ,
and V. V. Strijov2
Author Affiliations
Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny,
Moscow Region 141700, Russian Federation
Dorodnicyn Computing Center, Russian Academy of Sciences, 40 Vavilov Str.,
Moscow 119333, Russian Federation
|