Systems and Means of Informatics
2015, Volume 25, Issue 1, pp 127-141
ON CONVERGENCE OF RANDOM SUMS OF INDEPENDENT
RANDOM VECTORS TO MULTIVARIATE GENERALIZED
VARIANCE-GAMMA DISTRIBUTIONS
Abstract
The purpose of this work is to describe the conditions for convergence
of the distributions for sums of a random number of independent not necessarily
identically distributed multivariate random variables to multivariate normal
variance-mean mixtures, in particular, to multivariate generalized variance-
gamma distributions.
[+] References (16)
- Gnedenko, B.V. 1989. Ob otsenke neizvestnykh parametrov raspredeleniya pri
sluchaynom chisle nezavisimykh nablyudeniy [On estimate of unknown distribution
parameters in case of random number of independent values]. Tbilisi Mathematical
Institute 92:146-150.
- Korolev, V.Yu. 2013. Obobshchennye giperbolicheskie raspredeleniya kak predel'nye
dlya sluchaynykh summ [Generalized hyperbolic distributions as limiting for random
sums] Theory Probab. Appl. 58(1):117-132.
- Zaks, L.M., and V.Yu. Korolev. 2013. Obobshchennye dispersionnye gamma-
raspredeleniya kak predel'nye dlya sluchaynykh summ [Generalized variance gamma
distributions as limiting for random sums]. Informatika i ee Primeneniya - Inform.
Appl. 7(1):105-115.
- Korolev, V.Yu., and A. I. Zeifman. 2015 (in press). On convergence of the distributions
of statistics constructed from samples with random sizes to normal variance-mean
mixtures. J. Stat. Planning Inference. Available at: arXiv:1410.1518v1 [math.PR].
- Antonov, S.N., and S.N. Koksharov. 2006. Ob asimptoticheskom povedenii khvostov
masshtabnykh smesey normalnykh raspredeleniy [On asimptotic behavior of tails of
normal variance mixtures]. Statisticheskiye metody otsenivaniya i proverki gipotez
[Statistical methods for estimation and hypothesis validation]. Perm: Perm University
Press. 90-105.
- Loeve, M. 1955. Probability theory. Princeton, NJ: D Van Nostrand. 702 p.
- Barndorff-Nielsen, O. E. 1977. Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. Lond. A 353:401-419.
- Barndorff-Nielsen, O. E. 1978. Hyperbolic distributions and distributions of hyperbolae. Scand. J. Stat. 5:151-157.
- Barndorff-Nielsen, O. E., J. Kent, and M. S rensen. 1982. Normal variance-mean
mixtures and z-distributions. Int. Stat. Rev. 50(2):145-159.
- Jorgensen, B. 1982. Statistical properties of the generalized inverse Gaussian distribution. Lecture notes in statistics ser. Berlin: Springer. Vol. 9. 188 p.
- Stacy, E.W. 1962. A generalization of the gamma distribution. Ann. Math. Stat.
(33):1187-1192.
- Korolev, V.Yu., A.Yu. Korchagin, and A. I. Zeifman. 2015 (in press). O skhodimosti
raspredeleniy statistik, postroennykh po vyborkam sluchaynogo ob'yema, k mnogomernym obobshchennym dispersionnym gamma-raspredeleniyam [On convergence of
the distributions of statistics constructed fromsamples with random sizes tomultivariate
generalized variance-gamma distributions].Dokl. Akad. nauk [Acad. Sci. Rep.] 462(4).
- Billingsley, P. 1968. Convergence of probability measures. New York, NY: Wiley.
353 p.
- Zolotarev, V.M. 1997. Modern theory of summation of random variables. Utrecht:
VSP. 412 p.
- Kruglov, V.M. 1973. Skhodimost' chislovykh kharakteristik summ nezavisimykh
sluchaynykh velichin so znacheniyami v gil'bertovom prostranstve [Convergence of
numerical characteristics of sums of independent random variables with values in
Hilbert space]. Theory Probab. Appl. 18(3):734-752.
- Gikhman, I. I., and A.V. Skorokhod. 1971. Teoriya sluchaynykh protsessov [Theory of
random processes]. Moscow: Nauka. 665 p.
[+] About this article
Title
ON CONVERGENCE OF RANDOM SUMS OF INDEPENDENT
RANDOM VECTORS TO MULTIVARIATE GENERALIZED
VARIANCE-GAMMA DISTRIBUTIONS
Journal
Systems and Means of Informatics
Volume 25, Issue 1, pp 127-141
Cover Date
2013-11-30
DOI
10.14357/08696527150108
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
random sum; multivariate normal variance-mean mixture; multivari-
ate generalized hyperbolic distribution; multivariate generalized variance-gamma
distribution; generalized inverse Gaussian distribution; generalized gamma dis-
tribution
Authors
A. Yu. Korchagin
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow
State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|