Systems and Means of Informatics
2014, Volume 24, Issue 4, pp 63-85
RECENT WORKS IN THE FIELD OF MODELING INFORMATION FLOWS IN CONTEMPORARY HIGH-FREQUENCY FINANCIAL APPLICATIONS
- V. Yu. Korolev
- A. Yu. Korchagin
- I. A. Sokolov
- A. V. Chertok
Abstract
Some results of recent studies in the field of modeling information flows in contemporary high-frequency financial systems and applications are discussed. In particular, the microscale model proposed by the authors is considered. Within the framework of this model, the order flows are described by doubly stochastic Poisson processes (also called Cox processes) which take account of the random character of intensities. To study the evolution of the limit order book (the current list of all active buy and sell orders), the models are proposed for the processes of number of orders imbalance and order flows imbalance having the form of two-sided risk processes, special compound Cox processes. These processes are sensitive indicators of the current state of the limit order book and provide the possibility to interpolate dynamics of the market between price changes, say, to trace toxicity of the order flow. The paper presents a review of main results obtained by application of these models.
[+] References (28)
- Parlour, Ch. A. 1998. Price dynamics in limit order markets. Rev. Financ. Stud. 11 (4):789-816.
- Foucault, T. 1999. Order flow composition and trading costs in a dynamic limit order market. J. Financ. Mark. 2:99-134.
- Goettler, R., C. Parlour, and U. Rajan. 2005. Equilibrium in a dynamic limit order market. J. Financ. 60:2149-2192.
- Avellaneda, M., and S. Stoikov. 2008. High-frequency trading in a limit order book. Quant. Financ. 8:217-224.
- Rosu, I. 2009. A dynamic model of the limit order book. Rev. Financ. Stud. 22:4601-4641.
- Cont, R., S. Stoikov, and R. Talreja. 2010. A stochastic model for order book dynamics. Oper. Res. 58(3):549-563.
- Cont, R., A. Kukanov, and S. Stoikov. The price impact of order book events. Available at: http://ssrn.com/abstract=1712822 (accessed November 5, 2014).
- Cont, R., A. Kukanov, and S. Stoikov. 2014. The price impact of order book events. J. Financ. Economet. 12(1):47-88.
- Gorshenin, A., A. Doynikov, V. Korolev, and V. Kuzmin. 2012. Statistical properties of the dynamics of order books: Empirical results. Applied Problems in Theory of Probabilities and Mathematical Statistics Related to Modeling of Information Systems: Abstracts of VI Workshop (International). Moscow: IPI RAS. 31-51.
- Korolev, V., A. Chertok, A. Korchagin, and A. Gorshenin. 2013. Veroyatnostno- statisticheskoe modelirovanie informatsionnykh potokov v slozhnykh finansovykh sis- temakh na osnove vysokochastotnykh dannykh [Probability and statistical modeling of information flows in complex financial systems based on high-frequency data]. Informatika i ee Primeneniya - Inform. Appl. 7 (1): 12-21.
- Chertok, A., V. Korolev , A. Korchagin, and S. Shorgin. 2014 (in press). Modeling high-frequency non-homogeneous order flows by compound Cox processes. Financ. Eng. Available at: http://ssrn.com/abstract=2378975 (accessed January 14, 2014).
- Bening, V., and V. Korolev. 2002. Generalized Poisson models and their applications in insurance and finance. Utrecht, VSP. 434 p.
- Korolev, V.Yu., V.E. Bening, and S.Ya. Shorgin. 2011. Matematicheskie osnovy teorii riska [Mathematical foundations of the risk theory]. Moscow: Fizmatlit. 620 p.
- Korolev, V.Yu., A.V. Chertok, A. Yu. Korchagin, and A.I. Zeifman. 2014 (in press). Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes. Applied Mathematics Computation. Available at: http://arxiv.org/abs/1410.1900 (accessed November 5, 2014).
- Korolev V., and I. Shevtsova. 2012. An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums. Scand. Actuar. J. 2:81-105 (available online since June 4, 2010).
- Cont, R., and A. de Larrard. 2012. Order book dynamics in liquid markets: Limit the-orems and diffusion approximations. Available at: http://ssrn.com/abstract=1757861 (accessed February 1, 2012).
- Madan, D.B., and E. Seneta. 1990. The variance gamma (V.G.) model for share market return. J. Bus. 63:511-524.
- Eberlein, E., and U. Keller. 1995. Hyperbolic distributions in finance. Bernoulli 1(3):281-299.
- Prause, K. 1997. Modeling financial data using generalized hyperbolic distributions. Freiburg: Universitat Freiburg, Institut fur Mathematische Stochastic. Preprint No. 48.
- Carr, P. P., D. B. Madan, and E. C. Chang. 1998. The variance gamma process and option pricing. Eur. Financ. Rev. 2:79-105.
- Eberlein, E., U. Keller, and K. Prause. 1998. New insights into smile, mispricing and value at risk: The hyperbolic model. J. Bus. 71:371-405.
- Eberlein, E., andK. Prause. 1998. The generalized hyperbolic model: Financial deriva-tives and risk measures. Freiburg: Universituat Freiburg, Institut fuur Mathematische Stochastic. Preprint No. 56.
- Shiryaev, A.N. Osnovy stohasticheskoy finansovoy matematiki [Basics of stochastic finance]. Moscow: Fazis. 1998. 512 p.
- Eberlein, E. 1999. Application of generalized hyperbolic Levy motions to finance. Freiburg: Universitat Freiburg, Institut fur Mathematische Stochastic. Preprint No. 64.
- Jacod, J., and A.N. Shiryaev. 2003. Limit theorems for stochastic processes. 2nd ed. Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag. 288. 664 p.
- Korolev, V.Yu., and I. A. Sokolov. 2012. Skoshennye raspredeleniya St'yudenta, dispersionnye gamma-raspredeleniya i ikh obobshcheniya kak asimptoticheskie ap- proksimatsii [Skew Student distributions, variance-gamma distributions, and their generalizations as asymptotic approximations]. Informatika i ee Primeneniya - Inform. Appl. 6(1):2-10.
- Korolev, V.Yu. 2013. Obobshchennye giperbolicheskie zakony kak predel'nye dlya raspredeleniy sluchaynykh summ [Generalized hyperbolic laws as the limit for distri-butions of random sums]. Teoriya Veroyatnostey i ee Primeneniya [Probability Theory and Its Applications] 58(1):117-132.
- Zaks, L. M., and V.Yu. Korolev. 2013. Obobshchennye dispersionnye gamma- raspredeleniya kak predel'nye dlya sluchaynykh summ [Variance-generalized-gamma- distributions as limit laws for random sums]. Informatika i ee Primeneniya - Inform. Appl. 7 (1): 105-115.
[+] About this article
Title
RECENT WORKS IN THE FIELD OF MODELING INFORMATION FLOWS IN CONTEMPORARY HIGH-FREQUENCY FINANCIAL APPLICATIONS
Journal
Systems and Means of Informatics
Volume 24, Issue 4, pp 63-85
Cover Date
2013-11-30
DOI
10.14357/08696527140404
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
financial markets; high-frequency financial systems; limit order book; number of orders imbalance; order flows imbalance; doubly stochastic Poisson process; compound Cox process; normal variance-mean mixture; twosided risk process; separation of mixtures; EM-algorithm; generalized variance gamma distribution; generalized gamma distribution; generalized hyperbolic distribution; generalized inverse Gaussian distribution
Authors
V. Yu. Korolev , ,
A. Yu. Korchagin ,
I. A. Sokolov ,
and A. V. Chertok ,
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Euphoria Group LLC, 9, bld. 1, of. 6 Arkhangelsky Lane, Moscow 101000, Russian Federation
|