Systems and Means of Informatics
2014, Volume 24, Issue 3, pp 63-77
SELF-TIMED FUSED MULTIPLY-ADD UNIT: PRACTICAL IMPLEMENTATION
- Y. Stepchenkov
- Y. Diachenko
- Y. Rogdestvenski
- N. Morozov
- D. Stepchenkov
- A. Rogdestvenskene
- A. Surkov
Abstract
Paper presents the results of designing Speed-Independed Fused Multiply-Add (SIFMA) variants compliant with the IEEE 754 Standard. SIFMA performs either one double precision FMA operation or one or two single precision operations simultaneously under three operands. SIFMA was designed for the standard 65-nanometer CMOS (complementary metall-oxide- semiconductor) technology. It uses both a standard cell library and a self-timed cell library designed in IPI RAS. One SIFMA variant operates with a synchronous environment, while another works with an asynchronous environment.
Both variants provide an average performance up to 1 GFlops for 1 -volt supply and environment temperature of 25 °C. At these conditions, energy consumption does not exceed 970 mJ/GHz.
[+] References (17)
- Chen, C., L.-A. Chen, and J.-R. Cheng. 2002. Architectural design of a fast floatingpoint multiplication-add fused unit using signed-digit addition. IEE Proc. Comput. Dig. Tec. 149(4):113-120.
- Seidel, P. 2003. Multiple path IEEE floating-point fused multiply-add. 46th IEEE Midwest Symposium (International) on Circuits and Systems Proceedings. Cairo, Egypt. 1359-1362.
- Lang, T., and J. Bruguera. 2004. Floating-point fused multiply-add with reduced latency. IEEE Trans. Comput. 53(8):42-51.
- Libo, H., S. Li, D. Kui, and W. Zhiying. 2007. A new architecture for multiple- precision floating-point multiply-add fused unit design. 18th IEEE Symposium on Computer Arithmetic Proceedings. Montpellier. 69-76.
- Quinnell, E.C., E. Swartzlander, and C. Lemonds. 2007. Floating-point fused multiply-add architectures. 41th Asilomar Conference on Signals, Systems and Computers Proceedings. Pacific Grove, Etats-Unis. 42-51.
- Quinnell, E. C., E. Swartzlander, and C. Lemonds. 2008. Three-path fused multiply adder circuit. United States Patent Application Publication No. 0256150.
- Walaa Abd El Aziz, I. 2012. Binary floating point fused multiply add unit. Master Thesis. Giza, Egypt. 88 p.
- IEEE Computer Society. 2008. IEEE standard for floating-point arithmetic 754-2008. doi: 10.1109/IEEESTD .2008.4610935.
- Stepchenkov, Y. A., Y. G. Diachenko, Y. V. Rogdestvenski, N. V. Morozov, and D.Y. Stepchenkov. 2010. Razrabotka vychislitelya, nezavisyashchego ot zaderzhek elementov [Designing of the delay independent computing device]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 20(1):237-254.
- Varshavsky, V.I., ed. 1990. Self-timed control of concurrent processes: The design of aperiodic logical circuits in computers and discrete systems. Mathematics and its applications ser. Dordrecht, The Netherlands: Kluwer Academic Publs. 418 p.
- Makino, H., Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K. Mashiko. 1996. An 8.8 ns 54 õ 54 bit multiplier with high speed redundant binary architecture. IEEE J. Solid-St. Circ. 31(6):773-783.
- Hensley, J., A. Lastra, and M. Singh. 2005. A scalable counterflow-pipelined asynchronous radix-4 booth multiplier. Symposium (International) on Asynchronous Circuits and Systems Proceedings. 128-137.
- Rogdestvenski, Y. V., N. V. Morozov, and A. Rogdestvenskene. 2010. ASPEKT: Pod- sistema sobytiynogo analiza samosinkhronnykh skhem [ASPECT: A suite of self-timed event-driven analysis]. Tr. Mezhdunar. konf. "Problemy Razrabotki Perspektivnykh mikro- i nanoelektronnykh sistem" [Problems of the Perspective Micro- and Nanoelec- tronic Systems Development Proceedings]. Moscow. 26-31.
- Rogdestvenski, Y. V., N. V. Morozov, Y. A. Stepchenkov, and A. V. Rogdestvenskene. 2006. Universal'naya podsistema analiza samosinkhronnykh skhem [The universal suite for self-timed circuit analysis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 16(2):463-475.
- Fant, K. M. 2005. Logically determined design: Clockless system design with NULL convention logic. New York: J. Wiley & Sons. 292 p.
- Sokolov, I. A., Y. A. Stepchenkov, S. G. Bobkov, V.N. Zakharov, Y. G. Diachenko, Y. V. Rogdestvenski, and A. V. Surkov. 2014. Bazis realizatsii super-EVM eksaflop- snogo klassa [Implementation basis of ExaFlops class supercomputer]. Informatika i ee Primeneniya - Inform. Appl. 8(1):45-70.
- Stepchenkov, Y.A., A. N. Denisov, Y. G. Diachenko, et al. 2013. Biblioteka elemen- tov dlya proektirovaniya samosinkhronnykh poluzakaznykh BMK seriy 5503/5507
i 5508/5509 [Cell library for designing self-timed 5503/5507 and 5508/5509 gate- arrays]. Moscow: IPI RAN. 391 p.
[+] About this article
Title
SELF-TIMED FUSED MULTIPLY-ADD UNIT: PRACTICAL IMPLEMENTATION
Journal
Systems and Means of Informatics
Volume 24, Issue 3, pp 63-77
Cover Date
2013-11-30
DOI
10.14357/08696527140305
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuit; ternary coding; multiplier; adder; subtracter; pipeline; indication
Authors
Y. Stepchenkov , Y. Diachenko ,
Y. Rogdestvenski , N. Morozov ,
D. Stepchenkov , A. Rogdestvenskene ,
and A. Surkov
Author Affiliations
Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Scientific Research Institute for System Studies, Russian Academy of Sciences, 36 bld. 1 Nakhimovsky Prosp., Moscow 117218, Russian Federation
|