Informatics and Applications
2025, Volume 19, Issue 4, pp 12-25
A PRACTICAL STUDY OF THE EXTENDED KALMAN FILTER INSTABILITY
- A. V. Bosov
- I. V. Uryupin
Abstract
The paper examines the variants of unstable operation of the extended Kalman filter (EKF). The set of experiments was performed with a typical model of a stochastic observation system. The motion of an autonomous object with a constant average velocity was modeled under conditions of uncontrolled velocity perturbations forming a chaotic trajectory with a regular target direction. Observations of two independent complexes consist of measurements of bearing angles (azimuth and elevation angle) and range. The estimation of the object's position is performed by the basic EKF and its modification using the method of linear pseudoobservations. The basic EKF turns out to be unstable in the initial model. The EKF uses the method of pseudomeasurements to provide a stable assessment of the position with high accuracy. The purpose of the experiments is to show which changes in the monitoring system model led to unstable operation of this EKF modification. For this purpose, 4 scenarios have been proposed, calculated, and analyzed: (i) inaccurate detection of the initial position; (ii) inability to identify the speed parameters in advance; (iii) movement with an abrupt change in speed parameters while maintaining the direction of the target; and (iv) inaccurate setting of statistical characteristics (covariance) of measurement errors. In each of the scenarios, the EKF turns out to be unstable, forming an estimate of the object's position with unacceptable accuracy. At the same time, the nature of instability and the behavior of the EKF estimates are different as demonstrated by numerical and graphical calculation results.
[+] References (24)
- Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. J. Basic Eng. - T. ASME 82(1):35-45. doi: 10.1115/1.3662552.
- Bernstein, I., and B. Friedland. 1966. Estimation of the state of a nonlinear process in the presence of nongaussian noise and disturbances. J. Frankl. Inst. 281(6):455-480. doi: 10.1016/0016-0032(66)90434-0.
- Perea, L., J. How, L. Breger, and P. Elosegui. 2007. Nonlinearity in sensor fusion: Divergence issues in EKF, modified truncated GSF, andUKF. Guidance, Navigation and Control Conference and Exhibit Proceedings. AIAA. Art. 6514. 16 p. doi: 10.2514/6.2007-6514.
- Hashemi, R., and S. Engell. 2016. Effect of sampling rate on the divergence of the extended Kalman filter for a continuous polymerization reactor in comparison with particle filtering. IFAC PapersOnLine 49(7):365-370. doi: 10.1016/j.ifacol.2016.07.363.
- Bailey, T., J. Nieto, J. Guivant, M. Stevens, and E. Nebot. 2006. Consistency of the EKF-SLAM algorithm. IEEE/RSJ Conference (International) on Intelligent Robots and Systems Proceedings. Beijing, China: IEEE. 3562-3568. doi: 10.1109/IROS.2006.281644.
- Trevisan, A., and L. Palatella. 2011. On the Kalman filter error covariance collapse into the unstable subspace. Nonlinear Proc. Geoph. 18(2):243-250. doi: 10.5194/npg- 18-243-2011.
- Huang, G. P., A. I. Mourikis, and S. I. Roumeliotis. 2010. Observability-based rules for designing consistent EKF SLAM estimators. Int. J. Robot. Res. 29(5):502-528. doi: 10.1177/0278364909353640.
- Ljung, L. 1979. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE T. Automat. Contr. 24(1):36-50. doi: 10.1109/tac.1979.1101943.
- Ursin, B. 1980. Asymptotic convergence properties of the extended Kalman filter using filtered state estimates. IEEE T. Automat. Contr. 25(6):1207-1211. doi: 10.1109/TAC.1980.1102518.
- Bell, B. M., and F W. Cathey. 1993. The iterated Kalman filter update as a Gauss-Newton method. IEEE T. Automat. Contr. 38(2):294-297. doi: 10.1109/9.250476.
- Baras, J. S., A. Bensoussan, and M. R. James. 1988. Dynamic observers as asymptotic limits of recursive filters: Special cases. SIAMJ. Appl. Math. 48(5):1147-1158. doi: 10.1137/0148068.
- Reif, K., S. Gunther, E. Yaz, and R. Unbehauen.
1999. Stochastic stability of the discrete-time extended Kalman filter. IEEE T. Automat. Contr. 44(4):714-728. doi: 10.1109/9.754809.
- Reif, K., S. Gunther, E. Yaz, and R. Unbehauen. 2000. Stochastic stability of the continuous-time extended Kalman filter. IEE P. - Contr. Theor. Ap. 147(1):45-52. doi: 10.1049/ip-cta:20000125.
- Song, T. L., and J. L. Speyer. 1983. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements. IEEE Decis. Contr. P. IEEE. 1291-1296. doi: 10.1109/CDC.1983.269736.
- Lingren, A. G., and K. F. Gong. 1978. Position and velocity estimation via bearing observations. IEEE T. Aero. Elec. Sys. AES-14(4):564-577. doi: 10.1109/ TAES.1978.308681.
- Kolb, R. C., and F H. Hollister. 1967. Bearings-only target motion estimation. 1stAsilomar Conference on Circuits and Systems Proceedings. 935-946.
- Lin, X., T. Kirubarajan, Y. Bar-Shalom, and S. Maskell. 2002. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem. Proc. SPIE 4728:240-250. doi: 10.1117/12.478508.
- Amelin, K. S., and A. B. Miller. 2013. An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements. J. Commun. Technol. El. 59(6):622-631. doi: 10.1134/ S1064226914060047. EDN: SJVPPV
- Miller, A. B., and B. M. Miller. 2015. Stochastic control of light UAV at landing with the aid of bearing-only observations. Proc. SPIE 9875:987529. 10 p. doi: 10.1117/ 12.2228544.
- Bosov, A. V., and I.V. Uryupin. 2025. Modifitsirovannyy variant rasshirennogo fil'tra Kalmana po metodu lineynykh psevdonablyudeniy [A modified Extended Kalman Filter by the linear pseudomeasurement method]. Informatika i ee Primeneniya - Inform Appl. 19(2):17-26. doi: 10.14357/19922264250203. EDN: ZOVFSQ.
- Bosov, A. 2025. Linear pseudo-measurements filtering for tracking a moving underwater target by observations with random delays. Sensors 25(12):3757. 22 p. doi: 10.3390/s25123757.
- Bosov, A. V. 2025. Application of a linear pseudomeasurement filter to tracking and positioning based on observations with random delays. Automat. Rem. Contr. 86(10):953-968. doi: 10.31857/S0005117925100055.
- Uryupin, I. V. 2025. Ob universal'nykh modelyakh sostoyaniya dlya zadach slezheniya i navigatsii bespilotnykh dvizhushchikhsya ob"ektov [On universal state models for tracking and navigation tasks of unmanned moving objects]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 35(2):31-44. doi: 10.14357/ 08696527250203. EDN: WRGXLN.
- Uryupin, I.V. 2025. Tipovye modeli sistemy nablyudeniya dlya zadach otslezhivaniya i navigatsii bespilotnykh dvizhushchikhsya ob"ektov [Typical models of observation system for tracking and navigation of unmanned moving objects]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 35(3):54-70. doi:10.14357/08696527250304. EDN: BZVNER.
[+] About this article
Title
A PRACTICAL STUDY OF THE EXTENDED KALMAN FILTER INSTABILITY
Journal
Informatics and Applications
2025, Volume 19, Issue 4, pp 12-25
Cover Date
2025-30-12
DOI
10.14357/19922264250402
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
stochastic filtering; discrete stochastic observation system; extended Kalman filter (EKF); EKF by the method of linear pseudomeasurement
Authors
A. V. Bosov  and I. V. Uryupin
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|