Informatics and Applications
2025, Volume 19, Issue 3, pp 55-66
MULTIOPTION REDUNDANCY TAKING INTO ACCOUNT LOGICAL AND TOPOLOGICAL FEATURES OF TRANSISTOR CIRCUIT
- S. F. Tyurin
- M. S. Nikitin
- Yu. A. Stepchenkov
- Yu. G. Diachenko
Abstract
Passive fault tolerance of digital cells and devices is considered using multioption reliability taking into account features of the transistor redundancy topological simulation. A model is built that includes channel majority redundancy with the majority voters redundancy, allowing for the channel "collapse" during diagnostics, deep redundancy with redundancy at the level of individual channel's layers with special majority voters that ensure the configuration of layers into channels. The known methods are combined in a relationship that optimizes a given objective function with the required constraints. In addition, redundancy is used at the individual transistor level with varying degrees of failure protection. The topological features of such reservation are investigated by constructing various variants of circuits based on disjunctive normal, conjunctive normal, and intermediate forms. The power of the set of such variants is established. A method for searching for the topologically best variant with a large device dimension is proposed. By means of topological modeling, the preferred backup option is established based on the indicator of the consumed power and the switching delay product. Parameters examples of created topologies are given.
[+] References (24)
- Sekar, V. 2004. How foundries calculate die yield. Available at: https://www.viksnewsletter.com/p/how- foundries-calculate-die-yield (accessed August 29, 2025).
- Nadezhnost' i effektivnost' v tekhnike: Spravochnik [Reliability and efficiency in engineering: Handbook]. 1986- 1990. Moscow: Mashinostroenie. 10 vols. 3092 p.
- Hill, I., P C. R. Singh, S. A. Sheikholeslam, and A. Ivanov.
2022. CMOS reliability from past to future: A survey of requirements, trends, and prediction methods. IEEE T. Device Mat. Re. 22(1):1-18. doi: 10.1109/TDMR.2021. 3131345.
- Rajpoot, J., M. Gupta, and S. Verma. 2023. Enhancing the reliability of hybrid MTJ/CMOS circuits with auto write termination. Symposium (International) on the Physical and Failure Analysis of Integrated Circuits Proceedings. IEEE. Art. 10249113. 6 p. doi: 10.1109/IPFA58228. 2023.10249113.
- Ray, A., A. Jaiswal, and G. P Mishra. 2025. Total ionizing dose (TID) analysis of FinFET-based CMOS NAND and NOR logic gates. Devices for integrated circuit. IEEE. 723-726. doi: 10.1109/DevIC63749.2025.11012226.
- Cannon, M.J., A. M. Keller, A. Perez-Celis, and M. J. Wirthlin. 2020. Modeling common cause failures in systems with triple modular redundancy and repair. Annual Reliability and Maintainability Symposium Proceedings. IEEE. Art. 9153662. 6 p. doi: 10.1109/RAMS48030.2020. 9153662.
- Ismail, M.M. C.,I. S.A. Halim, S.L.M. Hassan, A. A. Ab Rahim, and N. E. Abdullah. 2021. Fault tolerant design comparison study of TMR and 5MR. Symposium on Industrial Electronics & Applications Proceedings. IEEE. Art. 9509996. 6 p. doi: 10.1109/ISIEA51897. 2021.9509996.
- Ahmed, S.A., and M. S. D. Rani. 2024. Decision tree based 5modular redundancy algorithm for fault identification in full adder circuit. Conference (International) on Recent Innovation in Smart and Sustainable Technology Proceedings. IEEE. Art. 10922023. 5 p. doi: 10.1109/ ICRISST59181. 2024.10922023.
- Saravanakumar, C., and N. UshaBhanu. 2021. Fault diagnosis of gate level 2-to-1 multiplexer in FinFET technology. Conference (International) on System, Computation, Automation and Networking Proceedings. IEEE. Art. 9526525. 4 p. doi: 10.1109/ICSCAN53069.2021.9526525.
- Jamil, M., S. Mukhopadhay, M. Ghoneim, A. Shailos, C. Prasad, I. Meric, and S. Ramey. 2023. Reliability studies on advanced FinFET transistors of the Intel 4 CMOS technology. Reliability Physics Symposium (International) Proceedings. IEEE. Art. 10117992. 5 p. doi: 10.1109/ IRPS48203.2023.10117992.
- Huang, Y.-Y., P.-T. Huang, P.-Y. Lee, and P Su.
2023. Novel complementary FeFET-based lookup table and routing switch design and their applications in energy/area-efficient FPGA. 7th Electron Devices Technology & Manufacturing Conference Proceedings. IEEE. Art. 10103081. 3 p. doi: 10.1109/EDTM55494.2023. 10103081.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, and Yu.V. Rogdestvenski. 2020. Povyshenie sboeustoychivosti samosinkhronnykh skhem [Improvement of selftimed circuit soft error tolerance]. Informatika i ee Prime- neniya - Inform. Appl. 14(4):63-68. doi: 10.14357/ 19922264200409. EDN: SCPZVU.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, Yu.V. Rogdestvenski, and A.N. Kamenskih. 2021. Bazis realizatsii sboeustoychivykh elektronnykh skhem [The electronic component base of failure resilience digital circuits]. Informatika i ee Primeneniya - Inform. Appl. 15(4):65-71. doi: 10.14357/19922264210409. EDN: PASSDD.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, and Yu.V. Rogdestvenski. 2022. Otsenka nadezhnosti sinkhronnogo i samosinkhronnogo konveyerov [Synchronous and self-timed pipeline's reliability estimation]. Informatika i ee Primeneniya - Inform. Appl. 16(4):2-7. doi: 10.14357/19922264220401. EDN: GWXJHM.
- Efanov, D. V., and T. S. Pogodina. 2024. Osobennosti obnaruzheniya oshibok pri kontrole vychisleniy v tsifrovykh ustroystvakh po priznaku samodvoystvennosti bulevykh funktsiy [The specificity of error detection as part of computing testing in digital devices based on selfduality of Boolean functions]. Nadezhnost' [Dependability] 24(2):24-37. doi: 10.21683/1729-2646-2024-24-2- 24-37. EDN: TGVARR.
- Kumawat, H., and P Nagar. 2024. On modified-Weibull distribution under left censoring. Conference (International) on Artificial Intelligence and Emerging Technology (Global AI Summit) Proceedings. IEEE. 1348-1353. doi: 10.1109/GlobalAISummit62156.2024.10947937.
- Avizienis, A., and J.-C. Laprie. 1986. Dependable computing: From concepts to application. Proceedings IEEE 74(5):629-638. doi: 10.1109/PROC.1986.13527.
- Sapozhnikov, V.V., V.V Sapozhnikov, and D.V. Efanov. 2019. Osnovy teorii nadezhnosti i tekhnicheskoy diagnostiki [Fundamentals of reliability theory and technical diagnostics]. St. Petersburg: Lan'. 588 p. EDN: IZBJPZ.
- Remala, V. N., A. A. Reddy, R. P. Vidyadhar, and
S. N. Bandi. 2021. Circuit reliability through probabilistic transfer matrix. 6th Conference (International) on Communication and Electronics Systems Proceedings. IEEE. 165-172. doi: 10.1109/ICCES51350.2021.9489243.
- Carmichael, C. 2006. Triple module redundancy design
techniques for virtex FPGAs. Xilinx. 37 p. Available at: https://www.xilinx.com/support/documentation/application_notes/xappl97.pdf (accessed August 29, 2025).
- El-Maleh, A. H., B. M. Al-Hashimi, A. Melouki, and A. Al-Yamani. 2010. Transistor-level based defect- tolerance for reliable nanoelectronics. Robust computing with nano-scale devices. Ed. C. Huang. Lecture notes in electrical engineering ser. Dordrecht: Springer. 58:29-49. doi: 10.1007/978-90-481-8540-5_3.
- Tyurin, S. 2021. Hyper redundancy for super reliable FPGAs. Radioelektronni i komp'yuterni sistemi [Radioelectronic and Computer Systems] 1:119-132. doi: 10.32620/reks.2021.1.11.
- Mead, C. A., and L. Conway. 1979. Introduction to VLSI systems. 2nd ed. Addison-Wesley. 396 p.
- Skornyakova, A. Yu., and R.V. Vikhorev. 2020. Selftimed LUT layout simulation. Conference of Russian Young Researchers in Electrical and Electronic Engineering Proceedings. IEEE. 176-179. doi: 10.1109/ EIConRus49466.2020.9039374.
[+] About this article
Title
MULTIOPTION REDUNDANCY TAKING INTO ACCOUNT LOGICAL AND TOPOLOGICAL FEATURES OF TRANSISTOR CIRCUIT
Journal
Informatics and Applications
2025, Volume 19, Issue 3, pp 55-66
Cover Date
2025-10-10
DOI
10.14357/19922264250307
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
fault tolerance; redundancy; majority voter; topological simulation
Authors
S. F. Tyurin  ,  , M. S. Nikitin  , Yu. A. Stepchenkov  , and Yu. G. Diachenko
Author Affiliations
 Perm National Research Polytechnic University, 7 Prof. Pozdeev Str., Perm 614013, Russian Federation
 Perm State University, 15 Bukireva Str., Perm 614990, Russian Federation
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|