Informatics and Applications
2025, Volume 19, Issue 1, pp 82-88
METRIZATION OF DISCRETE TOPOLOGICAL SPACES IN THE CONTEXT OF LATTICE THEORY. PART 1. ON THE NORMALITY OF SPACES
Abstract
A fundamental problem in machine learning and other modern methods of data analysis is the solution to the issue of generating metric distance functions (metrics) that would be adequate to the applied problems under study. The paper presents the results of a systematic analysis of the possibilities of metrization of discrete topological spaces using the concepts of lattice theory. A theorem on the regularity and normality of topological spaces arising in problems of recognition, classification, and numerical forecasting is proved. The regularity (according to Zhuravlev) of a set of precedents guarantees the normality of a topological space (separability axiom T4) and, consequently, the metrizability of this space. The author plans to put practical applications of the consequences of the theorem on regularity and normality presented in a separate paper that will make it possible to systematize the search forproblem-oriented metrics which are most suitable for a particular applied problem.
[+] References (12)
- Torshin, I. Yu. 2023. O formirovanii mnozhestv pretsedentov na osnove tablits raznorodnykh priznakovykh opisaniy metodami topologicheskoy teorii analiza dannykh [On the formation of sets of precedents based on tables of heterogeneous feature descriptions by methods of topological theory of data analysis]. Informatika i ee Primeneniya - Inform. Appl. 17(3):2-7. doi: 10.14357/19922264230301. EDN: AQEUYO.
- Torshin, I. Yu. 2023. O zadachakh optimizatsii, voznikayushchikh pri primenenii topologicheskogo analiza dannykh k poisku algoritmov prognozirovaniya s fiksirovannymi korrektorami [On optimization problems arising from the application of topological data analysis to the search for forecasting algorithms with fixed correctors]. Informatika i ee Primeneniya - Inform. Appl. 17(2):2-10. doi: 10.14357/19922264230201. EDN: IGSPEW
- Torshin, I. Yu. 2024. O porozhdenii sinteticheskikh priznakov na osnove opornykh tsepey i proizvol'nykh metrik v ramkakh topologicheskogo podkhoda k analizu dannykh.
Chast' 1. Vklyuchenie v formalizm empiricheskikh funktsiy rasstoyaniya [On the generation of synthetic features based on support chains and arbitrary metrics within a topological approach to data analysis. Part 1. Inclusion of empirical distance functions into the formalism]. Informatika i ee Primeneniya - Inform. Appl. 18(1):71-77. doi: 10.14357/19922264240110. EDN: RIVOXR.
- Torshin, I. Yu. 2022. O primenenii topologicheskogo podkhoda k analizu plokho formalizuemykh zadach dlya postroeniya algoritmov virtual'nogo skrininga kvantovomekhanicheskikh svoystv organicheskikh molekul
I: Osnovy problemno orientirovannoy teorii [On the application of a topological approach to analysis of poorly formalized problems for constructing algorithms for virtual screening of quantum-mechanical properties of organic molecules I: The basics of the problem-oriented theory]. Informatika i ee Primeneniya - Inform. Appl. 16(1):39-45. doi: 10.14357/19922264220106. EDN: CEODNE.
- Torshin, I. Yu. 2024. O porozhdenii sinteticheskikh priznakov na osnove opornykh tsepey i proizvol'nykh metrik v ramkakh topologicheskogo podkhoda k analizu dannykh.
Chast' 2. Eksperimental'naya aprobatsiya na zadachakh farmakoinformatiki [On the generation of synthetic features based on support chains and arbitrary metrics within the framework of a topological approach to data analysis. Part 2. Experimental testing on pharmacoinfor- maticsproblems]. Informatika ieePrimeneniya - Inform. Appl. 18(2):47-53.doi: 10.14357/19922264240207.EDN: OTXCUD.
- Rudakov, K. V., and I. Y. Torshin. 2010. Voprosy razreshimosti zadachi raspoznavaniya vtorichnoy struktury belka [Solvability problems in the protein secondary structure recognition]. Informatika i ee Primeneniya - Inform. Appl. 4(2):25-35. EDN: MRMSWN.
- Torshin, I. Yu., and K. V. Rudakov. 2020. Topological data analysis in materials science: The case of high-temperature cuprate superconductors. Pattern Recognition Image Analysis 30(2):264-276. doi: 10.1134/S1054661820020157.
- Aleksandrov, P. S., and A. N. Kolmogorov. 1948. Vvedenie v obshchuyu teoriyu mnozhestv i funktsiy [Introduction to the general theory of sets and functions]. Moscow: GITTL. 411 p.
- Birkhoff, G. 1967. Lattice theory. 3rded. Providence, RI: American Mathematical Society, Col Pub. 418 p.
- Torshin, I. Yu., and K. V Rudakov. 2015. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition Image Analysis 25(4):577-587. doi: 10.1134/ S1054661815040252.
- Munkres, J. R. 2000. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall, Inc. 537 p.
- Rudakov, K. V. 1988. Symmetric and functional constraints for classification algorithms. Soviet Mathematics Doklady 36(3):428-431.
[+] About this article
Title
METRIZATION OF DISCRETE TOPOLOGICAL SPACES IN THE CONTEXT OF LATTICE THEORY. PART 1. ON THE NORMALITY OF SPACES
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 82-88
Cover Date
2025-04-01
DOI
10.14357/19922264250111
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
topological data analysis; lattice theory; algebraic approach of Yu. I. Zhuravlev and K. V. Rudakov; separation axioms
Authors
I. Yu. Torshin
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|