Informatics and Applications
2025, Volume 19, Issue 1, pp 74-81
SOLVING INVERSE STATISTICAL PROBLEMS USING THRESHOLD PROCESSING METHODS THAT ALLOW THE CONSTRUCTION OF AN UNBIASED ESTIMATE OF THE MEAN-SQUARE RISK
Abstract
The methods of wavelet analysis in combination with threshold processing procedures are widely used in the tasks of estimating the signal function from noisy data. Their popularity is explained by their adaptability to the local features of the studied functions and the high speed of processing algorithms. This approach has also proved fruitful for the inversion of linear homogeneous operators that arise in some signal and image processing tasks. The most common types of threshold processing are hard and soft threshold processing. However, when using hard threshold processing, estimates with large variance are obtained and soft threshold processing leads to an additional bias. In an attempt to get rid of these disadvantages, various alternative types of threshold processing have been proposed in recent years. In this paper, the author considers a class of threshold functions that allow the construction of an unbiased estimate of the mean-square risk. This estimate makes it possible to analyze the error of noise reduction methods. The study of the properties of unbiased risk estimate is an important practical task, since it allows one to assess the quality of both the methods themselves and the equipment used. The paper discusses strategies for choosing threshold values and provides statements about the asymptotic normality and strong consistency of the risk estimate.
[+] References (27)
- Donoho, D. 1995. Nonlinear solution of linear inverser problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. A. 2(2):101-126. doi: 10.1006/acha. 1995.1008.
- Abramovich, F., and B. W. Silverman. 1998. Wavelet decomposition approaches to statistical inverse problems. Biometrika 85(1):115-129. doi: 10.1093/biomet/85.1.115.
- Gao, H.-Y. 1998. Wavelet shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. 7(4):469- 488. doi: 10.1080/10618600.1998.10474789
- Chmelka, L., and J. Kozumplik. 2005. Wavelet- based Wiener filter for electrocardiogram signal demising. Comput. Cardiol. 32:771-774. doi: 10.1109/CIC. 2005.1588218.
- Poornachandra, S., N. Kumaravel, T. K. Saravanan, and R. Somaskandan. 2005. WaveShrink using modified hyper-shrinkage function. 27th Annual Conference (International) of the IEEE Engineering in Medicine and Biology Society Proceedings. Piscataway, NJ: IEEE. 30-32. doi: 10.1109/IEMBS.2005.1616334.
- Lin, Y., and J. Cai. 2010. A new threshold function for signal denoising based on wavelet transform. Conference (International) on Measuring Technology andMechatronics Automation Proceedings. Piscataway, NJ: IEEE. 200-203. doi: 10.1109/ICMTMA.2010.347.
- Huang, H.-C. and T.C.M. Lee. 2010. Stabilized thresholding with generalized sure for image denoising. 17th Conference (International) on Image Processing Proceedings. Piscataway, NJ: IEEE. 1881-1884. doi: 10.1109/ICIP.2010.5652353.
- Zhao, R.-M., and H.-M. Cui. 2015. Improved threshold denoising method based on wavelet transform. 7th Conference (International) on Modelling, Identification and Control Proceedings. Piscataway, NJ: IEEE. 7409352. 4 p. doi: 10.1109/ICMIC.2015.7409352.
- He, C., J. Xing, J. Li, Q. Yang, and R. Wang. 2015. A new wavelet thresholding function based on hyperbolic tangent function. Math. Probl. Eng. 2015:528656. 10 p. doi: 10.1155/2015/528656.
- Priya, K. D., G. S. Rao, and P. S. Rao. 2016. Comparative analysis of wavelet thresholding techniques with wavelet-wiener filter on ECG signal. Procedia Comput. Sci. 87:178-183. doi: 10.1016/j.procs.2016.05.145.
- He, H., and Y. Tan. 2018. A novel adaptive wavelet thresholding with identical correlation shrinkage function for ECG noise removal. Chinese J. Electron. 27(3):507-513. doi: 10.1049/cje.2018.02.006.
- Stein, C. 1981. Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6):1135-1151. doi: 10.1214/aos/1176345632.
- Shestakov, O.V. 2020. Asimptoticheskaya regulyarnost' veyvlet-metodov obrashcheniya lineynykh odnorodnykh operatorov po nablyudeniyam, registriruemym v sluchaynye momenty vremeni [Asymptotic regularity of the wavelet methods of inverting linear homogeneous operators from observations recorded at random times]. Informatika i ee Primeneniya - Inform. Appl. 14(1):3-9. doi: 10.14357/19922264200101. EDN: GJHMNK.
- Palionnaya, S. I., and O. V. Shestakov. 2022. Ispol'zovanie FDR-metoda mnozhestvennoy proverki gipotez pri obrashchenii lineynykh odnorodnykh operatorov [The use of the FDR method of multiple hypothesis testing when inverting linear homogeneous operators]. Informatika i ee Primeneniya - Inform. Appl. 16(2):44-51. doi: 10.14357/ 19922264220206. EDN: NBVVTW.
- Shestakov, O. V. 2022. Nesmeshchennaya otsenka riska porogovoy obrabotki s dvumya porogovymi znacheniyami [Unbiased thresholding risk estimate with two
threshold values]. Informatika i ee Primeneniya - Inform. Appl. 16(4):14-19.doi: 10.14357/19922264220403. EDN: DZBVLC.
- Shestakov, O. V., and E. P. Stepanov. 2023. Nelineynaya regulyarizatsiya obrashcheniya lineynykh odnorodnykh operatorov s pomoshch'yu metoda blochnoy porogovoy obrabotki [Nonlinear regularization of the inversion of linear homogeneous operators using the block thresholding method]. Informatika i ee Primeneniya - Inform. Appl. 17(4):2-8. doi: 10.14357/19922264230401. EDN: PGKKYE.
- Vorontsov, M. O., and O. V. Shestakov. 2024. Asimptoticheskaya normal'nost' i sil'naya sostoyatel'nost' otsenki riska pri ispol'zovanii FDR-poroga v usloviyakh slaboy zavisimosti [Asymptotic normality and strong consistency of risk estimate when using the FDR threshold under weak dependence condition]. Informatika i ee Primeneniya - Inform. Appl. 18(3):69-79. doi: 10.14357/19922264240309. EDN: ZOQVTO.
- Lee, N. 1997. Wavelet-vaguelette decompositions and homogeneous equations. West Lafayette, IN: Purdue University. PhD Thesis. 93 p.
- Mallat, S. 1999. A wavelet tour of signal processing. New York, NY: Academic Press. 857 p.
- Donoho, D., and I. M. Johnstone. 1994. Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3):425- 455. doi: 10.1093/biomet/81.3.425.
- Donoho, D., and I. M. Johnstone. 1998. Minimax estimation via wavelet shrinkage. Ann. Stat. 26(3):879-921. doi: 10.1214/aos/1024691081.
- Jansen, M. 2001. Noise reduction by wavelet thresholding. Lecture notes in statistics ser. New York, NY: Springer. Vol. 161. 196 p.
- Donoho, D., and I. M. Johnstone. 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432):1200-1224. doi: 10.1080/ 01621459.1995.10476626.
- Marron, J. S., S. Adak, I. M. Johnstone, M. H. Neumann, and P. Patil. 1998. Exact risk analysis of wavelet regression. J. Comput. Graph. Stat. 7(3):278-309. doi: 10.1080/ 10618600.1998.10474777.
- Shestakov, O. V. 2012. Asymptotic normality of adaptive wavelet thresholding risk estimation. Dokl. Math. 86(1):556-558. doi: 10.1134/S1064562412040370. EDN: RGEMMD.
- Shestakov, O. V. 2012. O svoystvakh otsenki srednekvadratichnogo riska pri regulyarizatsii obrashcheniya lineynogo odnorodnogo operatora s pomoshch'yu adaptivnoy porogovoy obrabotki koeffitsientov veyglet-veyvlet razlozheniya [The properties of mean square error estimate when regularizing the inversion of the homogeneous linear operator using adaptive thresholding of wavelet-vaguelette decomposition coefficients]. Vestnik Tverskogo gosudarst- vennogo universiteta. Ser. Prikladnaya matematika [Herald of Tver State University. Ser. Applied mathematics] 1(24): 117-130. EDN: PEZOJH.
- Shestakov, O.V. 2017. Sil'naya sostoyatel'nost' otsenki srednekvadratichnoy pogreshnosti pri reshenii obratnykh statisticheskikh zadach [Strong consistency of the mean square risk estimate in the inverse statistical problems]. Informatika i ee Primeneniya - Inform. Appl. 11(2):117-121. doi: 10.14357/19922264170213. EDN: YTYGBP.
[+] About this article
Title
SOLVING INVERSE STATISTICAL PROBLEMS USING THRESHOLD PROCESSING METHODS THAT ALLOW THE CONSTRUCTION OF AN UNBIASED ESTIMATE OF THE MEAN-SQUARE RISK
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 74-81
Cover Date
2025-04-01
DOI
10.14357/19922264250110
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
wavelets; threshold processing; linear homogeneous operator; unbiased risk estimate
Authors
O. V Shestakov  ,  ,
Author Affiliations
 Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
|