Informatics and Applications
2025, Volume 19, Issue 1, pp 44-51
NORMAL CONDITIONALLY-OPTIMAL FILTERING METHODS FOR IMPLICIT STOCHASTIC SYSTEMS
Abstract
The paper is dedicated to nonlinear synthesis of normal conditionally-optimal (in Pugachev sense) filters (NCOF) for information processing in interconnected observable implicit object stochastic systems (StS) reducible to explicit. Differential and difference equations of observable non-Gaussian StS are presented and methods of its reduction are considered. Special attention is paid to nonsmooth implicit StS. Differential NCOF equations are derived by methods of normal approximation (NAM) of the set of differential equations for object, observation system, and Pugachev conditionally-optimal filters. Difference NCOF equations based on NAM are given for nonlinear regression and autoregression StS models. Some generalizations for complex implicit StS and control StS are formulated.
[+] References (19)
- Sinitsyn, I. N. 2024. Metody uslovno-optimal'noy fil'tratsii i ekstrapolyatsii v nablyudaemykh neyavnykh stokhasticheskikh sistemakh [Conditionally optimal filtering and extrapolation methods for observable implicit stochastic systems]. Informatika i ee Primeneniya - Inform. Appl. 18(4):2-9. doi: 10.14357/19922264240401. EDN: TFPJYK.
- Sinitsyn, I. N. 2024. Uslovno-optimal'naya fil'tratsiya i ekstrapolyatsiya v neyavnykh differentsial'nykh gaussovskikh stokhasticheskikh sistemakh pri avtokorrelirovannoy pomekhe v nablyudeniyakh [Conditionally optimal filtering and extrapolation for differential Gaussian implicit stochastic systems at autocorrelated noise in observations]. Informatika i ee Primeneniya - Inform. Appl. 18(4):19-25. doi: 10.14357/19922264240403. EDN: CVUETK.
- Sinitsyn, I. N. 2024. Diskretnoe uslovno-optimal'noe otsenivanie v neyavnykh nablyudaemykh stokhasticheskikh sistemakh [Discrete conditionally-optimal estimation in observable implicit stochastic systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(4): 16-30. doi: 10.14357/08696527240402. EDN: TLHYYA.
- Pugachev, V.S., and I. N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, NY: J. Wiley & Sons. 549 p.
- Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. 2nd ed. Moscow: Logos. 776 p.
- Kazakov, I. E. 1977. Statisticheskaya dinamika sistem peremennoy struktury [Statistical dynamics of systems of variable structure]. Moscow: Nauka. 416 p.
- Kazakov, I. E., and V. M. Artem'ev. 1980. Optimizatsiya dinamicheskikh sistem sluchaynoy struktury [Optimization of dynamic systems of random structure]. Moscow: Nauka. 384 p.
- Kazakov, I. E., V. M. Artem'ev, and V.A. Bukhalev. 1993. Analiz sistem sluchaynoy struktury [Analysis of random structure systems]. Moscow: Fizmatlit. 272 p.
- Sinitsyn, I. N. 2025 (inpress). Metody normal'noy suboptimal'noy fil'tratsii v nablyudaemykh neyavnykh gaussovskikh stokhasticheskikh sistemakh [Normal suboptimal filtering methods in implicit observable Gaussian stochastic systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 35(1).
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I. N. 2023. Kanonicheskie predstavleniya sluchaynykh funktsiy. Teoriya i primeneniya [Canonical expansions of random functions. Theory and applications]. 2nd ed. Moscow: TORUS PRESS. 816 p.
- Kolmanovskiy, V. B., and V. R. Nosov. 1981. Ustoychivost' i periodicheskie rezhimy reguliruemykh sistem s posledstviem [Stability and periodic modes of regulated systems with consequences]. Moscow: Nauka. 448 p.
- Finogenko, I.A. 1983. O neyavnykh funktsional'no- differentsial'nykh uravneniyakh v banakhovom prostranstve [On implicit functional differential equations in a Banach space]. Dinamika nelineynykh sistem [Dynamics of nonlinear systems]. Novosibirsk: Nauka. 151-164.
- Azbelev, N. V., V. P. Maksimov, and L. F. Rakhmatulina. 1991. Vvedenie v teoriyu funktsional'no-differentsial'nykh uravneniy [Introduction to the theory of functional differential equations]. Moscow: Nauka. 277 p.
- Borisov, A. 1998. Optimal filtering in systems with degenerate noises in observations. Automat. Rem. Contr. 59(11,1):1526-1537. EDN: LFDCVH.
- Bosov, A. V. 2023. Issledovanie robastnosti chislennykh approksimatsiy fil'tra Vonema [Robustness investigation of the numerical approximation of the Wonham filter]. Informatika i ee Primeneniya - Inform. Appl. 17(2):41-49. doi: 10.14357/19922264230206. EDN: BGILKR.
- Bosov, A.V 2023. Optimal'naya fil'tratsiya sostoyaniya nelineynoy dinamicheskoy sistemy po nablyudeniyam so sluchaynymi zapazdyvaniyami [Nonlinear dynamic system state optimal filtering by observations with random delays]. Informatika i ee Primeneniya - Inform. Appl. 17(3):8-17. doi: 10.14357/19922264230302. EDN: CFVYJM.
- Bosov, A.V. 2022. Upravlenie lineynym vykhodom markovskoy tsepi po kvadratichnomu kriteriyu. Sluchay polnoy informatsii [Linear output control of Markov chain by square criterion. Complete information case]. Informatika i ee Primeneniya - Inform. Appl. 16(2):19-26. doi: 10.14357/19922264220203. EDN: FEQKUN.
- Konovalov, M. G., and R. V Razumchik. 2022. Sintez upravleniya dvumernym sluchaynym bluzhdaniem s etalonnym statsionarnym raspredeleniem [Controlling abounded two-dimensional Markov chain with a given invariant measure]. Informatika i ee Primeneniya - Inform. Appl. 16(2):109-117. doi: 10.14357/19922264220214. EDN: WVMOBH.
[+] About this article
Title
NORMAL CONDITIONALLY-OPTIMAL FILTERING METHODS FOR IMPLICIT STOCHASTIC SYSTEMS
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 44-51
Cover Date
2025-04-01
DOI
10.14357/19922264250106
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
conditionally-optimal (in Pugachev sense) filter; implicit stochastic system; normal approximation method (NAM); normal suboptimal filter (NSOF); stochastic process (StP)
Authors
I. N. Sinitsyn
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|