Informatics and Applications
2025, Volume 19, Issue 1, pp 33-43
DOPPLER MEASUREMENTS APPLICATION ANALYSIS TO IDENTIFY MOTION PARAMETERS FROM OBSERVATIONS WITH RANDOM DELAYS
Abstract
The moving object positioning problem statement uses a model of a stochastic dynamic observation system with random time delays between the subsequent observation and the actual state of the object and the presence of unknown motion parameters. For such a model, using the example of an underwater vehicle (UV), the variants of the observation formation are analyzed. The first uses only stationary acoustic sensors which allow measuring only angular coordinates. In the second variant, the measurements are supplemented by velocity measurements performed both on board the moving object and by external observers. Each model is used in two ways: assuming that there is complete a priori information about the parameters of the UV movement and in the absence of data on the values of some of the parameters. In the latter variant, the positioning problem is solved in conjunction with the task of unknown motion parameters identification. The models and the results of their experimental application are compared in order to qualitatively assess the effectiveness of using velocity measurements. To do this, a conditionally minimax nonlinear filter is applied to the problem. A comparative analysis of the models of the observation system was performed as a part of a large-scale computational experiment.
[+] References (22)
- Ehlers, F, ed. 2020. Autonomous underwater vehicles: Design and practice (radar, sonar & navigation). London, U.K.: SciTech Publishing. 592 p.
- Kebkal, K. G., and A. I. Mashoshin. 2017. AUV acoustic positioning methods. Gyroscopy Navigation 8:80-89. doi: 10.1134/S2075108717010059.
- Christ, R. D., and R. L. Wernli. 2013. The ROV manual: A user guide for remotely operated vehicles. 2nd ed. Oxford, U.K.: Butterworth-Heinemann. 712 p.
- Bosov, A.V. 2023. Optimal'naya fil'tratsiya sostoyaniya nelineynoy dinamicheskoy sistemy po nablyudeniyam so sluchaynymi zapazdyvaniyami [Nonlinear dynamic system state optimal filtering by observations with random delays]. Informatika i ee Primenen iya - Inform Appl. 17(3):8- 17. doi: 10.14357/19922264230302. EDN: CFVYJM.
- Pugachev, V.S. 1978. Recursive estimation of variables and parameters in stochastic systems described by difference equations. Soviet Mathematics Doklady 19:1495-1497.
- Pugachev, V. S. 1979. Estimation of variables and parameters in discrete time non-linear systems. Automat. Rem. Contr. 40(4):512-521.
- Pankov, A. R., and A. V. Bosov. 1994. Conditionally minimax algorithm for nonlinear system state estimation. IEEE T. Automat. Contr. 39(8):1617-1620. doi: 10.1109/ 9.310035.
- Bosov, A. V., and G. B. Miller. 2019. O razvitii kontseptsii uslovno-minimaksnoy nelineynoy fil'tratsii: modifitsirovannyy fil'tr i ego analiz [On the conditionally minimax nonlinear filtering concept development: Filter modification and analysis]. Informatika i ee Primeneniya - Inform. Appl. 13(2):7-15. doi: 10.14357/19922264190202. EDN: XZDVEV.
- Bosov, A. V. 2023. Observation-based filtering of state of a nonlinear dynamical system with random delays. Automat. Rem. Contr. 84(6):594-605. doi: 10.1134/ S0005117923060036. EDN: GVWEAB.
- Bosov, A. 2023. Tracking a maneuvering object by indirect observations with random delays. Drones 7(7):468. 17 p. doi: 10.3390/drones7070468.
- Ljung, L. 1987. System identification: Theory for the user. Hoboken, NJ: Prentice Hall. 519 p.
- Huber, P J., and E. M. Ronchetti. 2011. Robust statistics. 2nd ed. Wiley ser. in probability and statistics. New York, NY: Wiley. 384 p.
- Bosov, A. V. 2024. AUV positioning and motion parameter identification based on observations with random delays. Automat. Rem. Contr. 85(12):1149-1167. doi: 10.31857/ S0005117924120029.
- Hodges, R. 2011. Underwater acoustics: Analysis, design and performance ofsonar. New York, NY: Wiley. 384 p.
- Miller, A., B. Miller, and G. Miller. 2019. On AUV control with the aid of position estimation algorithms based on acoustic seabed sensing and DOA measurements. Sensors - Basel 19(24):5520. 21 p. doi: 10.3390/s19245520.
- Ishlinskiy, A. Yu. 1976. Oriyentatsiya, giroskopy i inertsial'naya navigatsiya [Orientation, gyroscopes, and inertial navigation]. Moscow: Nauka. 672 p.
- Bromberg, P.V. 1979. Teoriya inertsial'nykh sistem navigatsii [Theory of inertial navigation systems]. Moscow: Nauka. 296 p.
- Whitcomb, L., D. Yoerger, and H. Singh. 1999. Advances in Doppler-based navigation of underwater robotic vehicles. Conference (International) on Robotics and Automation Proceedings. IEEE. 1:399-406. doi: 10.1109/ ROBOT.1999.770011.
- Hegrenaes, O., and E. Berglund. 2009. Doppler water- track aided inertial navigation for autonomous underwater vehicle. OCEANS Europe Proceedings. IEEE. Art. 5278307. 10 p. doi: 10.1109/OCEANSE.2009.5278307.
- Snyder, J. 2010. Doppler velocity log (DVL) navigation for observation-class ROVs. OCEANS MTS/IEEE Seattle Proceedings. IEEE. Art. 5664561. 9 p. doi: 10.1109/ OCEANS.2010.5664561.
- Tal, A., I. Klein, and R. Katz. 2017. Inertial navigation system / Doppler velocity log (INS/DVL) fusion with partial DVL measurements. Sensors - Basel 17(2):415. 20 p. doi: 10.3390/s17020415.
- Miller, A., B. Miller, and G. Miller. 2018. AUV navigation with seabed acoustic sensing. Australian & New Zealand Control Conference Proceedings. IEEE. 166-171. doi: 10.1109/ANZCC.2018.8606561.
[+] About this article
Title
DOPPLER MEASUREMENTS APPLICATION ANALYSIS TO IDENTIFY MOTION PARAMETERS FROM OBSERVATIONS WITH RANDOM DELAYS
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 33-43
Cover Date
2025-04-01
DOI
10.14357/19922264250105
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
nonlinear stochastic observation system; Bayesian parameter identification; observations with random time delays; conditionally minimax nonlinear filter; positioning; acoustic sensors; Doppler effect
Authors
A. V. Bosov
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|