Informatics and Applications
2025, Volume 19, Issue 1, pp 25-32
FILTERING OF STATES AND PARAMETERS OF SPECIAL MARKOV JUMP PROCESSES VIA INDIRECT PERFECT OBSERVATIONS
Abstract
The paper investigates the problem of optimal state filtering of a class of stochastic differential observation systems. The state to be estimated consists of two compound components. The first is a finite-state Markov jump process. The second component changes synchronously with the first one and, given a fixed first component, forms a sequence of independent vectors. The available statistical information includes the known functions of the estimated state observed without noise. The problem is to construct the conditional distribution of the system's state given the available observations. In observation systems with degenerate noise, it is impossible to apply standard filtering techniques, which typically involve reducing the observations to a combination of Wiener and Poisson processes using a suitable Girsanov measure transform. The conditional distribution ofthe state can be represented using a recursively linked sequence ofordinary differential and difference equations.
[+] References (16)
- Bryson, A., and D. Johansen. 1964. Linear filtering for
time-varying systems using measurements containing colored noise. IEEE T. Automat. Contr. 10(1):4-10. doi: 10.1109/TAC.1965.1098063.
- Wong, E., and B. Hajek. 1985. Stochastic processes in engineering systems. New York, NY: Springer. 361 p. doi: 10.1007/978-1-4612-5060-9.
- Butov, A. 1980. Optimal linear filtering with degenerate
observation noise. Automat. Rem. Contr. 41(11):1506-1511.
- Liptser, R. S., and A. N. Shiryaev. 1974. Statistika
sluchaynykh protsessov (nelineynaya fil'tratsiya i smezhnye voprosy) [Statistics of random processes. Nonlinear
filtering and related problems]. Seriya "Teorya veroyatnostey i matematicheskaya statistika" [Probability theory
and mathematical statistics ser.]. Moscow: Nauka. 696 p.
- Qian, H., Q. Zhang, and G. Yin. 2022. Filtering with
degenerate observation noise: A stochastic approximation approach. Automatica 142:110376. doi: 10.1016/j.automatica.2022.110376.
- Joannides, M., and F. LeGland. 1997. Nonlinear filtering with continuous time perfect observations and non-informative quadratic variation. 36th IEEE Conference on
Decision and Control Proceedings. San Diego, CA: IEEE.
2:1645-1650. doi: 10.1109/CDC.1997.657750.
- Borisov, A. 1998. Optimal filtering in systems with degenerate noises in observations. Automat. Rem. Contr.
59(11-1):1526-1537. EDN: LFDCVH.
- Liptser, R. Sh., and A. N. Shiryayev. 1989. Theory of martingales. New York, NY: Springer. 812 p.
- Confortola, F, and M. Fuhrman. 2012. Filtering of continuous-time Markov chains with noise-free observation and applications. Stochastics 85(2):216-251. doi: 10.1080/17442508.2011.651214.
- Calvia, A. 2020. Stochastic filtering and optimal control of pure jump Markov processes with noise-free partial observation. ESAIM Contr. Opt. Ca. Va. 26:25. 47 p. doi: 10.1051/cocv/2019020.
- Borisov, A., Yu. Kurinov, and R. Smeliansky. 2024. Veroyatnostnyy analiz klassa markovskikh skachkoobraznykh protsessov [Probabilistic analysis of a class of Markov jump processes]. Informatika i ee Primeneniya - Inform. Appl. 18(3):30-37. doi: 10.14357/19922264240304. EDN: XPVTGJ.
- Borisov, A., Yu. Kurinov, and R. Smeliansky. 2024. Fil'tratsiya sostoyaniy klassa markovskikh skachkoobraznykh protsessov po raznorodnym nablyudeniyam s additivnymi shumami [Filtering of a class of Markovjump processes by heterogeneous observations with additive noises]. Informatika i ee Primeneniya - Inform. Appl. 18(4):45-53. doi: 10.14357/19922264240402. EDN: FEMNQL.
- Bertsekas, D., and S. Shreve. 1978. Stochastic optimal control: The discrete-time case. New York, San Francisco, London: Academic Press. 323 p.
- Konovalov, M. G., and R. V. Razumchik. 2024. O dispetcherizatsii v odnom klasse dvukhfaznykh sistem massovogo obsluzhivaniya [On one problem of load balancing in two-phase tandem queues]. Informatika i ee Primeneniya - Inform. Appl. 18(4):52-58. doi: 10.14357/ 19922264240407. EDN: KGCBFL.
- Agalarov, Ya. 2022. Optimal'noe upravlenie podklyucheniem rezervnogo pribora v sisteme massovogo obsluzhivaniya G/M/l [Optimal control of a queue-length dependent additional server in GI/M/l queue]. Infor- matika iee Primeneniya - Inform. Appl. 16(4):34-41. doi: 10.14357/19922264220406. EDN: QGZLUX.
- Agalarov, Ya. 2023. Optimizatsiya skhemy raspredeleniya bufernoy pamyati uzla paketnoy kommutatsii [Optimization of the buffer memory allocation scheme of the packet switching node]. Informatika i ee Primeneniya - Inform. Appl. 17(3):39-48.doi: 10.14357/19922264230306.EDN: QLXCKV.
[+] About this article
Title
FILTERING OF STATES AND PARAMETERS OF SPECIAL MARKOV JUMP PROCESSES VIA INDIRECT PERFECT OBSERVATIONS
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 25-32
Cover Date
2025-04-01
DOI
10.14357/19922264250104
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov jump process; stochastic differential observation system; indirect perfect observations;
martingale decomposition; regular version of conditional distribution
Authors
A. V. Borisov
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|