Informatics and Applications
2025, Volume 19, Issue 1, pp 9-15
ON GAME NETWORKS STRUCTURE OPTIMIZATION IN MULTIAGENT SYSTEMS
Abstract
Monoidal category of binary relations is applied to study and optimize large multiagent systems. Agents' communication networks structure choice is essential part of players' strategies. It must be selected to resolve the conflict of interests. Compositionality of the problem in the monoidal category gives possibility to solve it. Notion of the optimal game networks structure is contributed. The definition is based on equilibria and effectiveness principles usage. A method is proposed to find the optimal structure. It uses families of binary relations to compare given agents' preferences relations. Players' optimal communication structure is built by means of the most expedient players' coalitions search. Matrix algebra presentation of binary relations allows computing it. On the ground of the method, a new technology to study and optimize large multiagent systems can be built. Its program realization is supported by computer category algebra.
[+] References (18)
- Germeyer, Yu. B. 1976. Igry s neprotivopolozhnymi interesami [Games with nonopposing interests]. Moscow: Nauka. 326 p.
- Gubko, M.V 2004. Control of organizational systems with network interaction of agents. I. A review of network game theory. Automat. Rem. Contr. 65(8):1276-1291. doi: 10.1023/B:AURC.0000038730.85322.dc. EDN: CKCFXO.
- Vasilyev, N. S. 2023. Kompozitsional'noe predstavlenie struktury igry mnogikh lits v monoidal'noy kategorii binarnykh otnosheniy [Multiplayers' games compositional structure in the monoidal category of binary relations]. In- formatika i ee Primeneniya - Inform. Appl. 17(2):18-26. doi: 10.14357/19922264230203. EDN: GPMZTS.
- Vasilyev, N. S. 2024. O funktornom predstavlenii optimiziruemykh dinamicheskikh mul'tiagentnykh system [On functor representation of optimized dynamic multiagent systems]. Informatika i ee Primeneniya - Inform. Appl. 18(2):2-8. doi: 10.14357/19922264240201. EDN: CLM- BXC.
- Demange, G., and M. Wooders, eds. 2005. Groupformation in economics: Networks, clubs, and coalitions. Cambridge: Cambridge University Press. 475 p.
- Dixit, A. K., and B. J. Nalebuff. 2008. The art of strategy. New York, London: W W Norton & Co. 446 p.
- Shoham, Y., and R. Leyton-Brown. 2010. Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge: Cambridge University Press. 532 p.
- Bai, Q., F. Ren, K. Fujita, and M. Znang, eds. 2016. Multiagent and complex systems. Studies in computational intelligence ser. Singapore: Springer. 210 p. doi: 10.1007/ 978-981-10-2564-8.
- Dixit, A. K., S. Skeath, and D. H. Reiley, Jr. 2017. Games of strategy. New York, London: W W Norton & Co. 880 p.
- Skornyakov, L. A. 1983. Elementy obshchey algebry [Elements of general algebra]. Moscow: Nauka. 272 p.
- Mac Lane, S. 1998. Categories for the working mathematician. 2nd ed. New York, NY: Springer. 318 p.
- Abgaryan, K. K., and V. A. Osipova. 2019. Primenenie metodov podderzhki prinyatiya resheniy dlya mnogokriterial'noy zadachi otbora mnogomasshtabnykh kompozitsiy [Application of decision support methods for the multicriterial selection of multiscale compositions]. In- formatika i ee Primeneniya - Inform. Appl. 13(2):47-53. doi: 10.14357/19922264190207. EDN: TVWFDB.
- Potanin, M. S., K. O. Vayser, V. A. Zholobov, and V V Strijov. 2020. Optimizatsiya struktury setey glubokogo obucheniya [Deep learning neural network structure optimization]. Informatika i ee Primeneniya - Inform. Appl. 14(4):55-62. doi: 10.14357/19922264200408. EDN: XNTAJN.
- Kirikov, I. A., and S. V Listopad. 2021. Soglasovanie tseley agentov splochennykh gibridnykh intellektual'nykh mnogoagentnykh sistem [Coordination of agents' goals in cohesive hybrid intelligent multiagent systems]. Infor- matika i ee Primeneniya - Inform. Appl. 15(2):66-71. doi: 10.14357/19922264210210. EDN: UJPYBQ.
- Listopad, S. V., and I. A. Kirikov. 2022. Razreshenie konfliktov v gibridnykh intellektual'nykh mnogoagentnykh sistemakh [Conflict resolution in hybrid intelligent multiagent systems]. Informatika i ee Primeneniya - Inform. Appl. 16(1):54-60.doi: 10.14357/19922264220108. EDN: VHRAQC.
- Listopad, S. V., and I. A. Kirikov. 2023. Metod na osnove nechetkikh pravil dlya upravleniya konfliktami agentov v gibridnykh intellektual'nykh mnogoagentnykh sistemakh [Fuzzy rules based method for agent conflict management in hybrid intelligent multiagent systems]. Informatika i ee Primeneniya - Inform. Appl. 17(1):66- 72. doi: 10.14357/19922264230109. EDN: DCWSOQ.
- Listopad, S. V. 2024. Zhiznennyy tsikl metodologii postroeniya refleksivno-aktivnykh sistem iskusstvennykh geterogennykh intellektual'nykh agentov [Life cycle of methodology for constructing reflexive-active systems of artificial heterogeneous intelligent agents]. Informati- ka i ee Primeneniya - Inform. Appl. 18(1):84-91. doi: 10.14357/19922264240112. EDN: GUAMVE.
- Wooldridge, M. 2009. An introduction to multiagent systems. New York, NY: Wiley. 484 p.
[+] About this article
Title
ON GAME NETWORKS STRUCTURE OPTIMIZATION IN MULTIAGENT SYSTEMS
Journal
Informatics and Applications
2025, Volume 19, Issue 1, pp 9-15
Cover Date
2025-04-01
DOI
10.14357/19922264250102
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
monoidal category; preference relation; communication network; game network structure; expedient coalition; characteristic relation; resulting relation; compositionality
Authors
N. S. Vasilyev
Author Affiliations
 Bauman Moscow State Technical University, 5-1 Baumanskaya 2nd Str., Moscow 105005, Russian Federation
|