Informatics and Applications
2024, Volume 18, Issue 4, pp 77-85
NEURAL QUADTREE AND ITS APPLICATIONS FOR SAR IMAGERY SEGMENTATION
Abstract
The paper considers the neural ensemble neural network architecture that uses a quadtree model for SAR
(Synthetic Aperture Radar) image segmentation under the lack of training data. The Neural Quadtree network
(NQN) consists of segmentation network forming the image pixels features and a graph convolution network with
the special branch pruning block establishing the spatial and hierarchical connections between pixels. The NQN is
used for segmenting of several SAR images that differ a lot both in presented surfaces and characteristics (Sentinel-1,
ESAR (Experimental SAR), HRSID (High-Resolution SAR Images Dataset)). A comparison was made of the
results of processing images of NQN and a conventional quad-tree using a common U-Net network segmentor.
The NQN demonstrates the higher quality in target detection in comparison with a conventional quadtree. The
difference in Recall values for such objects classes between NQN and quadtree ranges from 2.13% to 11.63%.
[+] References (28)
- Clabaut, E., S. Foucher, Y. Bouroubi. and M. Germain.
2024. Synthetic data for Sentinel-2 semantic segmentation.
Remote Sens. — Basel 16(5):818. doi: 10.3390/
rs16050818.
- Aleiassaee, A., A. Kumar, R.M. Anwer, et al. 2023. Transformers
in remote sensing: A survey. Remote Sens.—Basel
15(7):1860. doi: 10.3390/rs15071860.
- Sun, Z., H. Geng, Z. Lu, R. Scherer, and M. Wozniak.
2021. Review of road segmentation for SAR images. Remote
Sens.— Basel 13(5):1011. doi: 10.3390/rs13051011.
- Ciecholewski, M. 2024. Review of segmentation methods
for coastline detection in SAR images. Arch. Comput.
Method. E. 31: 839–869. doi: 10.1007/s11831-023-10000-7.
- Prokhorets, I.O., and A. S. Stepanov. 2024. Kartografirovanie
zemel’ sel’skokhozyaystvennogo naznacheniya
Khabarovskogo kraya metodami mashinnogo obucheniya
s ispol’zovaniem izobrazheniy [Mapping of the
Khabarovsk Region arable lands by machine learning
using Sentinel-2 images]. Sistemy i Sredstva Informatiki
— Systems and Means of Informatics 34(1):57–69. doi:
10.14357/08696527240105. EDN: YEZNXD.
- Song, Y., T. Wang, P. Cai, S.K. Mondal, and J. Sahoo.
2023. A comprehensive survey of few-shot learning: Evolution,
applications, challenges, and opportunities. ACM
Comput. Surv. 55(13s):271. 40 p. doi: 10.1145/3582688.
- Karniadakis, G.E., I.G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang. 2021. Physics-informed machine
learning. Nature Reviews Physics 3:422–440. doi:
10.1038/s42254-021-00314-5.
- Gorshenin, A.K., and V. Yu. Kuzmin. 2020. Analiz konfiguratsiy
LSTM-setey dlya postroeniya srednesrochnykh
vektornykh prognozov [Analisys of configurations of
LSTM networks for medium-term vector forecasting].
Informatika i ee primeneniya—Inform. Appl. 14(1):10–16.
doi: 10.14357/19922264200102. EDN: SZNTXE.
- Gorshenin, A. K., and V. Yu. Kuzmin. 2021. Metod povysheniya
tochnosti neyrosetevykh prognozov s ispol’zovaniem
smeshannykh veroyatnostnykh modeley i ego realizatsiya
v vide tsifrovogo servisa [Method for improving
accuracy of neural network forecasts based on probability
mixture models and its implementation as a digital
service]. Informatika i ee primeneniya — Inform.
Appl. 15(3):63–74. doi: 10.14357/19922264210309.EDN:
FDRKZX.
- Gorshenin, A. K., and V. Yu. Kuzmin. 2022. Statistical
feature construction for forecasting accuracy increase and
its applications in neural network based analysis. Mathematics
10:589. doi: 10.3390/math10040589.
- Gorshenin, A. K., and A. L. Vilyaev. 2022. Finite normal
mixture models for the ensemble learning of recurrent
neural networks with applications to currency
pairs. Pattern Recognition Image Analysis 32:780–792. doi:
10.1134/S1054661822040058.
- Gorshenin, A. K., and V. Yu Korolev. 2020. Approksimatsiya
raspredeleniy razmerov chastits lunnogo regolita
na osnove metoda statisticheskoy simulyatsii vyborok
[Approximation of particle size distributions of lunar regolith based on the resampling]. Informatika i ee
primeneniya — Inform. Appl. 14(2):50–57. doi: 10.14357/
19922264200207. EDN: PQOYUJ.
- Gorshenin, A. K., S. A. Gorbunov, and D. Yu. Volkanov.
2023. O klasterizatsii ob”ektov setevoy vychislitel’noy infrastruktury
na osnove analiza statisticheskikh anomaliy
v trafike [Toward clustering of network computing infrastructure
objects based on analisys of statistical anomalies
in network traffic]. Informatika i ee primeneniya — Inform.
Appl. 17(3):76–87. doi: 10.14357/19922264230311.
EDN: XHTMVI.
- Pastorino, M., A. Montaldo, L. Fronda, et al. 2021.
Multisensor and multiresolution remote sensing image
classification through a causal hierarchical Markov framework
and decision tree ensembles. Remote Sens. — Basel
13(5):849. doi: 10.3390/rs13050849.
- Pastorino, M., G. Moser, S.B. Serpico, and J. Zerubia.
2022. Semantic segmentation of remote-sensing images
throughfully convolutional neural networks and hierarchical
probabilistic graphical models. IEEE T. Geosci. Remote
60:5407116. 16 p. doi: 10.1109/TGRS.2022.3141996.
- Dostovalova, A.M. 2023. Using a model of a spatial–
hierarchical quadtree with truncated branches to improve
the accuracy of image classification. Izv. Atmos.
Ocean. Phy. 59(10):1255–1262. doi: 10.1134/S0001433823120071.
- Jayaraman, P.K., J. Mei, J. Cai, and J. Zheng. 2018.
Quadtree convolutional neural networks. Computer vision.
Eds. V. Ferrari,M.Hebert,C. Sminchisescu, and Y.Weiss.
Lecture notes in computer science ser. Cham: Springer.
11210:554–569. doi: 10.1007/978-3-030-01231-1 34.
- Jewsbury, R., A. Bhalerao, and N.M. Rajpoot. 2021.
A quadtree image representation for computational
pathology. IEEE/CVF Conference (International) on Computer
Vision Science Proceedings. Piscataway, NJ: IEEE.
648–656. doi: 10.1109/ICCVW54120.2021.00078.
- Ronen, T., O. Levy, and A. Golbert. 2023. Vision transformers
with mixed-resolution tokenization. IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Proceedings. Piscataway, NJ: IEEE. 4612–4621.
- Ke, L., M. Danelljan, X. Li, Y.W. Tai, C.K. Tang, and
F. Yu. 2022. Mask transfiner for high-quality instance segmentation.
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Proceedings. Piscataway, NJ: IEEE.
4402–4411. doi: 10.1109/CVPR52688.2022.00437.
- Tang, S., J. Zhang, S. Zhu, and P. Tan. 2023. Quadtree
attention for vision transformers. Cornell University. 16 p.
Available at: https://arxiv.org/abs/2201.02767 (accessed
March 13,2024).
- Chitta, K., J.M. Alvarez, and M. Hebert. 2020. Quadtree
generating networks: Efficient hierarchical scene parsing
with sparse convolutions. IEEE Winter Conference
on Applications of Computer Vision Proceedings. Piscataway,
NJ: IEEE. 2009–2018. doi: 10.1109/WACV45572.2020.9093449.
- Zhang, S., H. Tong, J. Xu, et al. 2019. Graph convolutional
networks: A comprehensive review. Computational Social
Networks 6(11):94–104. doi: 10.1186/s40649-019-0069-y.
- Gorshenin, A. K., and E. I. Guseynova. 2023. Povyshenie
dokhodnosti torgovli na FOREX s pomoshch’yu
LSTM-identifikatsii svechnykh patternov i indikatora tikovykh
ob”emov [Increasing FOREX trading profitability
with LSTM candlestick pattern recognition and tick
volume indicator]. Informatika i ee primeneniya — Inform.
Appl. 16(3): 26–38. doi: 10.14357/19922264220304.
EDN: QOUMZY.
- Potin, P., P. Bargellini, H. Laur, B. Rosich, and
S. Schmuck. 2012. Sentinel-1 mission operations concept.
Geoscience and Remote Sensing Symposium (International)
Proceedings. Piscataway, NJ: IEEE. 1745–1749.
doi: 10.1109/IGARSS.2012.6351183.
- Scheiber, R., I. Hajnek, R. Horn, K. P. Papathanassiou,
P. Prats, and A. Moreira. 2008. Recent developments
and applications of multi-pass airborne interferometric
SAR using the E-SAR system. 7th European Conference
on Synthetic Aperture Radar Proceedings. Friedrichshafen,
Germany: IEEE. 4 p.
- Wei, Sh., X. Zeng, Q. Que, M. Wang, and H. Su.
2020. HRSID: A high-resolution SAR images dataset for
ship detection and instance segmentation. IEEE Access
8:120234–120254. doi: 10.1109/ACCESS.2020.3005861.
- Bergstra, J., and Y. Bengio. 2012. Random search for
hyper-parameter optimization. J. Mach. Learn. Res. 13(10): 281–305.
[+] About this article
Title
NEURAL QUADTREE AND ITS APPLICATIONS FOR SAR IMAGERY SEGMENTATION
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 77-85
Cover Date
2024-12-26
DOI
10.14357/19922264240410
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
quadtree; graph convolution network; SAR images; target detection
Authors
A. M. Dostovalova
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|