Informatics and Applications
2024, Volume 18, Issue 4, pp 34-43
MODELING THE PRICE ELASTICITY OF DEMAND ON PASSENGER AIR TRANSPORTATION IN RUSSIA WITH LIMITED STATISTICAL DATA
- I. V. Uryupin
- A. A. Sukharev
Abstract
The paper is aimed to suggest a model describing the influence of air fares on air transportation demand
in the Russian air transportation system. The authors suggest an approach and a mathematical model for the price
elasticity of air travel demand estimation in the Russian Federation both at the national level and for a single
route. In the context of limited statistical information, the problem of incomplete data on tariffs was solved by an
additional regression model of the dependence of tariffs on the distance of transportation. The results of the study
contribute to airline practitioners and stakeholders by providing a Russian-context-specific allied instrument for
estimating the influence of the air fare change on air transportation demand to solve a range of tasks related to
aircraft design and operation. The article demonstrates the use of the obtained model to assess the potential for changes in demand for transportation when replacing existing types of aircraft with advanced models on a specific
route and in the whole Russian air transportation system.
[+] References (28)
- Albayati, R. S., and R.N. Zehawi. 2022. System dynamic
model for simulating aviation demand: Baghdad international
airport as a case study. Mathematical Modelling
Engineering Problems 9(5):1289–1297. doi: 10.18280/mmep.090517.
- Rublev, V. V. 2020. Analiz effektivnosti mer gosudarstvennoy
podderzhki regional’nykh passazhirskikh aviaperevozok
v Rossiyskoy Federatsii [Analysis of the effectiveness
of state support measures for regional passenger air transport
in the Russian Federation]. Sovremennaya ekonomika:
problemy i resheniya [Modern Economics Problems
Solutions] 7:161–177. doi: 10.17308/meps.2020.7/2404.
EDN: GCGHRR.
- Dutov, A. V., and V. V. Klochkov. 2020. Metody
otsenki vliyaniya tekhnologiy na kharakteristiki perspektivnoy
produktsii i dostizhenie tseley nauchnotekhnologicheskogo
razvitiya (na primere grazhdanskogo
aviastroeniya) [Methods for assessing the impact of
technologies on the characteristics of promising products
and achieving the goals of scientific and technological
development]. Ekonomika nauki [Economics of Science]
6(1-2):35–45. doi: 10.22394/2410-132X-2020-6-1-2-35-45. EDN: VHHKUN.
- Vyshinskiy, L. L., and Yu.A. Flerov. 2024. Modeli sinteza
komponovochnoy skhemy v zadache formirovaniya
oblika samoleta [Synthesis models of layout scheme in
the task of forming an aircraft image]. Informatika i ee
Primeneniya — Inform. Appl. 18(1):61–70. doi: 10.14357/
19922264240109. EDN: DSPGKV.
- Vyshinskiy, L.L., and Yu.A. Flerov. 2021. Teoreticheskie
osnovy formirovaniya vesovogo oblika samoleta [Theoretical
foundation of formation of aircraftweight appearance].
Informatika i ee Primeneniya — Inform. Appl. 15(4):93–
102. doi: 10.14357/19922264210413. EDN UGQQLU.
- Richmond, S.B. 1955. Forecasting air passenger traffic
by multiple regression analysis. J. Air Law Commerce
22(4):434–444.
- Washington, S., M.G. Karlaftis, F. Mannering, and
P. Anastasopoulos. 2020. Statistical and econometric methods
for transportation data analysis. 3rd ed. London,U.K.:
Chapman and Hall/CRC. 496 p.
- Granados, N., A. Gupta, and R. J. Kauffman. 2012. Online
and offline demand and price elasticities: Evidence
from the air travel industry. Inform. Syst. Res. 23(1):164–
181. doi: 10.1287/isre.1100.0312.
- Mumbower, S., L. A.Garrow, and M. J. Higgins. 2014.Estimating
flight-level price elasticities using online airline
data: A first step toward integrating pricing, demand, and
revenue optimization. Transport. Res. A — Pol. 66:196–
212. doi: 10.1016/J.TRA.2014.05.003.
- Molloy, J., P.C. Melo, D. J. Graham, A. Majumdar, and
W.Y. Ochieng. 2012. Role of air travel demand elasticities
inreducing aviation’s carbondioxide emissions.Transport.
Res. Rec. 2300(1):31–41. doi: 10.3141/2300-04.
- Klophaus, R., and T. Grosche. 2020. Consumer surplus
analysis of selected long-haul air transport routes connecting
Germany with California and China. Res. Transp.
Econ. 80:100793. 9 p. doi: 10.1016/j.retrec.2019.100793.
- Morrison, S.A. 1984. An economic analysis of aircraft
design. J. Transp. Econ. Policy 18(2):123–143.
- Bureau of transport and communications economics.
1995. Demand elasticities for air travel to and from Australia.
Canberra, Australia: Department of Transport and
Communications. Working paper 20. 112 p. Available at:
https://www.bitre.gov.au/sites/default/¦les/wp 020.pdf (accessed July 3, 2024).
- Oum, T.H., D.W. Gillen, and S. E. Noble. 1986. Demands
for fare classes and pricing in airline markets.
Logist. Transport. Rev. 22(3):195–222.
- Gillen, D.W., W.G. Morrison, and C. Stewart. 2003. Air
travel demand elasticities: Concepts, issues and measurement.
Ottawa, Canada: Department of Finance, Government
of Canada. Final Report. 2:365–410.
- Kincaid, I., and M. Trethaway. 2007. Estimating air travel
demand elasticities. InterVISTAS Consulting Inc. Final
Report. 58 p.Available at: https://www.iata.org/en/iata-
repository/publications/economic-reports/estimating-
air-travel-demand-elasticities---by-intervistas (accessed
July 3, 2024).
- Bosov, A. V., and D. V. Zhukov. 2021. Ekspertnaya sistema
dlya monitoringa i prognozirovaniya protsessov raspredeleniya
resursov [Expert system for monitoring and
forecasting of resource allocation processes]. Informatika
i ee Primeneniya — Inform. Appl. 15(3):29–40. doi:
10.14357/19922264210305. EDN: UGKIQA.
- Spivak, S. I., O.G. Kantor, D. S. Yunusova,
S. I. Kuznetsov, and S. V. Kolesov. 2015. Otsenka pogreshnosti
i znachimosti izmereniy dlya lineynykh modeley
[Evaluation of measurement accuracy and significance
for linearmodels]. Informatika i ee Primeneniya—Inform.
Appl. 9(1):87–97. doi: 10.14357/19922264150108. EDN:
TVXFFV.
- Bazilevskiy, M.P. 2020. Mnogofaktornye modeli polnosvyaznoy
lineynoy regressii bez ogranicheniy na sootnosheniya
dispersiy oshibok peremennykh [Multifactor fully
connected linear regression models without constraints
to the ratios of variables errors variances]. Informatika
i ee Primeneniya — Inform. Appl. 14(2):92–97. doi:
10.14357/19922264200213. EDN: KIOMAF.
- Bazilevskiy, M.P. 2021. Metod vypryamleniya iskazhennykh
iz-za mul’tikollinearnosti koeffitsientov v regressionnykh
modelyakh [Method of straightening distorted
due tomulticollinearity coefficients in regressionmodels].
Informatika i ee Primeneniya—Inform. Appl. 15(2):60–65.
doi: 10.14357/19922264210209. EDN: GCWTOB.
- Wang, S., and Y. Gao. 2021. A literature review and
citation analyses of air travel demand studies published
between 2010 and 2020. J. Air Transp. Manag. 97:102135.
15 p. doi: 10.1016/j.jairtraman.2021.102135.
- Oum, T.H., W.G. Waters, and J. S. Yong. 1990. A survey
of recent estimates of price elasticities of demand
for transport. Washington, D.C.: World Bank Group.
Policy, Planning and Research Department Working
Paper No.WPS 359. Available at: http://documents.
worldbank.org/curated/en/573201468766481035/A-
survey-of-recent-estimates-of-price-elasticities-of-
demand-for-transport (accessed December 8, 2024).
- Hsiao, C.Y., and M. Hansen. 2011. A passenger demand
model for air transportation in a hub-and-spoke
network. Transport. Res. E — Log. 47(6):1112–1125. doi:
10.1016/j.tre.2011.05.012.
- Gallet, C.A., and H. Doucouliagos. 2014. The income
elasticity of air travel: A meta-analysis. Ann. Tourism Res.
49:141–155. doi: 10.1016/j.annals.2014.09.006.
- Dubinina, V.G. 2005. Povyshenie effektivnosti funktsionirovaniya
aviakompanii na osnove informatsionno analiticheskoy
podderzhki biznes-protsessov [Improving
the operating efficiency of the airline based on information
and analytical support for business processes]. Moscow:
MGTU Stankin. D.Sc. Diss. 236 p.
- Okulov, V. M., M. I. Poluboyarinov, E. P. Kurochkin,
N. F. Akimova, V. G. Dubinina, and M. V. Yakimets. 2008.
Avtomatizirovannaya sistema prognozirovaniya passazhirooborota
s uchetome lastichnosti sprosa [Automated system
for forecasting passenger turnover taking into account
elasticity of demand]. Patent RF for a utility model
No. 77470. EDN: ZWZNGP.
- Tellis, G. J. 1988. The price elasticity of selective demand:
A meta-analysis of econometric models of sales. J. Marketing
Res. 25(4):331–341. doi: 10.2307/3172944.
- Lantseva, A., K. Mukhina, A. Nikishova, et al. 2015.Datadriven
modeling of airlines pricing. Procedia Comput. Sci.
66:267–276. doi: 10.1016/j.procs.2015.11.032.
[+] About this article
Title
MODELING THE PRICE ELASTICITY OF DEMAND ON PASSENGER AIR TRANSPORTATION IN RUSSIA WITH LIMITED STATISTICAL DATA
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 34-43
Cover Date
2024-12-26
DOI
10.14357/19922264240405
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
air transportation system; mathematical modeling; price elasticity; airlines; air transportation
Authors
I. V. Uryupin  and A. A. Sukharev
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow 101000, Russian Federation
|