Informatics and Applications
2024, Volume 18, Issue 4, pp 26-33
STATISTICAL PROPERTIES OF THE MEAN-SQUARE RISK ESTIMATE FOR THE BLOCK THRESHOLD PROCESSING METHOD IN NONPARAMETRIC REGRESSION PROBLEMS WITH A RANDOM GRID
Abstract
Wavelet analysis methods in combination with thresholding procedures are widely used in nonparametric
regression problems when estimating a signal function from noisy data. Their popularity is explained by their
adaptability to local features of the functions under study, high speed of processing algorithms, and optimality of
the estimates obtained. Error analysis of these methods is an important practical task, since it allows one to estimate
the quality of both the methods themselves and the equipment used. Sometimes, the nature of the data is such
that observations are recorded at random points in time. If the sample points form a variation series of a sample
from a uniform distribution over the data recording interval, then the use of standard thresholding procedures is
adequate. This paper considers the block thresholdingmethod, in which the wavelet decomposition coefficients are
processed in groups that allows one to take into account information about neighboring coefficients. An analysis
of the mean square risk estimate of this method is carried out and it is shown that under certain conditions, this
estimate turns out to be strongly consistent and asymptotically normal.
[+] References (25)
- Donoho, D., and I.M. Johnstone. 1994. Ideal spatial
adaptation via wavelet shrinkage. Biometrika 81(3):425–
455. doi: 10.1093/biomet/81.3.425.
- Donoho, D., and I.M. Johnstone. 1995. Adapting
to unknown smoothness via wavelet shrinkage. J.
Am. Stat. Assoc. 90(432): 1200–1224. doi: 10.1080/
01621459.1995.10476626.
- Donoho, D., I.M. Johnstone, G. Kerkyacharian, and
D. Picard. 1995. Wavelet shrinkage: Asymptopia? J. Roy.
Stat. Soc. B Met. 57(2):301–369.
- Donoho, D., and I.M. Johnstone. 1998. Minimax estimation
via wavelet shrinkage. Ann. Stat. 26(3):879–921.
doi: 10.1214/aos/1024691081.
- Marron, J. S., S. Adak, I.M. Johnstone, M.H. Neumann,
and P. Patil. 1998. Exact risk analysis of wavelet
regression. J. Comput. Graph. Stat. 7(3):278–309. doi:
10.1080/10618600.1998.10474777.
- Vorontsov, M.O., and O. V. Shestakov. 2023. Srednekvadratichnyy
risk FDR-protsedury v usloviyakh slaboy zavisimosti
[Mean-square risk of the FDR procedure under
weak dependence]. Informatika i ee Primeneniya — Inform.
Appl. 17(2):34–40. doi: 10.14357/19922264230205.
EDN: AVJZDX.
- Hall, P., G. Kerkyacharian, and D. Picard. 1999. On the
minimax optimality of block thresholded wavelet estimators.
Stat. Sinica 9:33–49.
- Cai, T. 1999. Adaptive wavelet estimation: A block
thresholding and oracle inequality approach. Ann. Stat.
28(3):898–924. doi: 10.1214/aos/1018031262.
- Cai, T., and L. Brown. 1998. Wavelet shrinkage for
nonequispaced samples. Ann. Stat. 26(5):1783–1799. doi:
10.1214/aos/1024691357.
- Cai, T, and L. Brown. 1999. Wavelet estimation for samples
with random uniform design. Stat. Probabil. Lett.
42:313–321. doi: 10.1016/S0167-7152(98)00223-5.
- Chicken, E. 2003. Block thresholding and wavelet estimation
for nonequispaced samples. J. Stat. Plan. Infer.
116(1):113–129. doi: 10.1016/S0378-3758(02)00238-0.
- Shestakov, O. V. 2010. Approksimatsiya raspredeleniya
otsenki riska porogovoy obrabotki veyvlet-koeffitsientov
normal’nym raspredeleniem pri ispol’zovanii vyborochnoy
dispersii [Normal approximation for distribution
of risk estimate for wavelet coefficients thresholding
when using sample variance]. Informatika i ee Primeneniya—
Inform. Appl. 4(4):73–81. EDN: NULNZH.
- Shestakov, O. V. 2012. Asymptotic normality of adaptive
wavelet thresholding risk estimation. Dokl. Math.
86(1):556–558. doi: 10.1134/S1064562412040370. EDN:
RGEMMD.
- Shestakov, O. V. 2016. On the strong consistency of the
adaptive risk estimator for wavelet thresholding. J. Mathematical
Sciences 214(1):115–118. doi: 10.1007/s10958-
016-2761-x. EDN: WPVZZV.
- Shestakov, O. V. 2016. Statisticheskie svoystva metoda
podavleniya shuma, osnovannogo na stabilizirovannoy
zhestkoy porogovoy obrabotke [Statistical properties
of the denoising method based on the stabilized hard
thresholding]. Informatika i ee Primeneniya — Inform.
Appl. 10(2):65–69. doi: 10.14357/19922264160207.EDN:
WCBWWP.
- Shestakov, O. V. 2021. Analiz nesmeshchennoy otsenki
srednekvadratichnogo riska metoda blochnoy porogovoy
obrabotki [Analysis of the unbiased mean-square
risk estimate of the block thresholding method]. Informatika
i ee Primeneniya — Inform. Appl. 15(2):30–35.
doi:10.14357/19922264210205. EDN: DSQQAU.
- Shestakov, O. V. 2022. Nesmeshchennaya otsenka riska
porogovoy obrabotki s dvumya porogovymi znacheniyami
[Unbiased thresholding risk estimate with two threshold
values]. Informatika i ee Primeneniya — Inform.
Appl. 16(4):14–19. doi: 10.14357/19922264220403.EDN:
DZBVLC.
- Vorontsov, M.O., and O. V. Shestakov. 2024. Asimptoticheskaya
normal’nost’ i sil’naya sostoyatel’nost’ otsenki
riska pri ispol’zovanii FDR-poroga v usloviyakh slaboy
zavisimosti [Asymptotic normality and strong consistency
of risk estimate when using the FDR threshold
under weak dependence condition]. Informatika i ee
Primeneniya — Inform. Appl. 18(3):69–79. doi: 10.14357/
19922264240309. EDN: ZOQVTO.
- Gao, H.-Y. 1998. Wavelet shrinkage denoising using the
non-negative garrote. J. Comput. Graph. Stat. 7(4):469–
488. doi: 10.1080/10618600.1998.10474789.
- Poornachandra, S., N. Kumaravel, T.K. Saravanan,
and R. Somaskandan. 2005. WaveShrink using modified
hyper-shrinkage function. 27th Annual Conference (International)
of the IEEE Engineering in Medicine and Biology
Society Proceedings. Piscataway, NJ: IEEE. 30–32. doi:
10.1109/IEMBS.2005.1616334.
- Lin, Y., and J. Cai. 2010. A new threshold function for
signal denoising based on wavelet transform. Conference
(International) on Measuring Technology and Mechatronics
Automation Proceedings. Piscataway, NJ: IEEE. 200–203.
doi: 10.1109/ICMTMA.2010.347.
- Huang, H.-C., and T.C.M. Lee. 2010. Stabilized
thresholding with generalized sure for image denoising.
17th Conference (International) on Image Processing
Proceedings. Piscataway, NJ: IEEE. 1881–1884. doi:
10.1109/ICIP.2010.5652353.
- He, C., J. Xing, J. Li, Q. Yang, and R. Wang. 2015. A new
wavelet thresholding function based on hyperbolic tangent
function. Math. Probl. Eng. 2015:528656. 10 p. doi:
10.1155/2015/528656.
- Zhao, R.-M., and H.-M. Cui. 2015. Improved threshold
denoising method based on wavelet transform. 7th
Conference (International) onModelling, Identification and
Control Proceedings. Piscataway, NJ: IEEE. Art. 7409352.
4 p. doi: 10.1109/ICMIC.2015.7409352.
- Shestakov, O. V. 2019. Svoystva veyvlet-otsenok signalov,
registriruemykh v sluchaynye momenty vremeni [Properties
of wavelet estimates of signals recorded at random
time points]. Informatika i ee Primeneniya — Inform.
Appl. 13(2):16–21. doi: 10.14357/19922264190203.EDN:
SEYEXW.
[+] About this article
Title
STATISTICAL PROPERTIES OF THE MEAN-SQUARE RISK ESTIMATE FOR THE BLOCK THRESHOLD PROCESSING METHOD IN NONPARAMETRIC REGRESSION PROBLEMS WITH A RANDOM GRID
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 26-33
Cover Date
2024-12-26
DOI
10.14357/19922264240404
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
wavelets; block thresholding; randomsamples; unbiased risk estimation
Authors
O. V. Shestakov , ,
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov
Moscow State University, 1-52 Leninskie Gory, GSP-1,Moscow 119991, Russian Federation
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Moscow Center for Fundamental and Applied Mathematics, M. V. Lomonosov Moscow State University,
1 Leninskie Gory, GSP-1,Moscow 119991, Russian Federation
|