Informatics and Applications
2024, Volume 18, Issue 4, pp 19-25
CONDITIONALLY OPTIMAL FILTERING AND EXTRAPOLATION FOR DIFFERENTIAL GAUSSIAN IMPLICIT STOCHASTIC SYSTEMS AT AUTOCORRELATED NOISE IN OBSERVATIONS
Abstract
The theory of Pugachev conditionally-optimal filtering and extrapolation of stochastic processes described
by explicit stochastic differential equations at autocorrelated noise in observations iswidely used inmodern real-time
information processing. The paper is devoted to implicitGaussian stochastic systems (StS) reducible to explicit StS
at observational autocorrelated noises. Themain results are: (i) typical mathematical models of observable implicit
StS reducible to differential explicit StS; (ii) basic equations for nonlinear conditionally-optimal filters (COF)
and conditionally-optimal extrapolators (COE) at noncorrelated and autocorrelated noises; and (iii) illustrative
examples for reducible StS. Main conclusions and perspective directions for COF and COE design in the case of
implicit differential and functional differential StS are given.
[+] References (14)
- Sinitsyn, I.N. 2024. Metody uslovno-optimal’noy
fil’tratsii i ekstrapolyatsii v nablyudaemykh neyavnykh
stokhasticheskikh sistemakh [Conditionally optimal filtering
and extrapolation methods for observable implicit
stochastic systems]. Informatika i ee Primeneniya — Inform.
Appl. 18(4):2–9.
- Sinitsyn, I.N. 2007. Fil’try Kalmana i Pugacheva [Kalman
and Pugachev filters]. 2nd ed.Moscow: Logos. 776 p.
- Sinitsyn, I.N., and E.R. Korepanov. 2015. Ustoychivye
lineynye uslovno-optimal’nye fil’try i ekstrapolyatory dlya
stokhasticheskikh sistem s mul’tiplikativnymi shumami
[Stable linear conditionally optimal filters and extrapolators
for stochastic systems with multiplicative noises].
Informatika i ee Primeneniya — Inform. Appl. 9(1):70–75.
doi: 10.14357/19922264150106. EDN: TVXFFB.
- Sinitsyn, I.N., and E.R. Korepanov. 2016. Normal’nye
uslovno-optimal’nye fil’try i ekstrapolyatory Pugacheva
dlya stokhasticheskikh sistem, lineynykh otnositel’no sostoyaniya
[Normal Pugachev conditionally-optimal filters
and extrapolators for state linear stochastic systems]. Informatika
i ee Primeneniya — Inform. Appl. 10(2):14–23.
doi: 10.14357/19922264160202. EDN: WCBWUR.
- Sinitsyn, I.N., and E.R. Korepanov. 2015. Normal’nye
uslovno-optimal’nye fil’try Pugacheva dlya differentsial’nykh
stokhasticheskikh sistem, lineynykh otnositel’no
sostoyaniya [Normal Pugachev filters for state
linear stochastic systems]. Informatika i ee Primeneniya—
Inform. Appl. 9(2):30–38. doi: 10.14357/19922264150204.
EDN: TZBVRV.
- Korn, G., and T. Korn. 1968. Mathematical handbook
for scientists and engineers. New York–San Francisco–
Toronto–London–Sydney: McGraw Hill Book Co.
1147 p.
- Tolstonogov, A.A., and I.A. Finogenko. 1980. On
functional-differential inclusions in a Banach space with a nonconvex right-hand side. Soviet Mathematics Doklady
22:320–324.
- Finogenko, I. A. 1980. K voprosu o resheniyakh
funktsional’no-differentsial’nykh vklyucheniy [On the issue
of solutions of functional-differential inclusions].
Prikladnaya matematika i pakety prikladnykh programm
[Applied mathematics and application software packages].
Irkutsk: SEISO AN SSSR. 95–107.
- Finogenko, I.A. 1981. Svoystva mnozhestva resheniy
funktsional’no-differentsial’nykh vklyucheniy [Properties
of the solution set of functional differential inclusions].
Krayevye zadachi [Boundary value problem]. Perm: PPI.
145–149.
- Kolmanovskiy, V. B., and V.R. Nosov. 1981. Ustoychivost’
i periodicheskie rezhimy reguliruemykh sistem s posledstviem
[Stability and periodic modes of regulated systems with
consequences]. Moscow: Nauka. 448 p.
- Finogenko, I.A. 1983. O neyavnykh funktsional’no-differentsial’nykh
uravneniyakh v banakhovom prostranstve
[On implicit functional differential equations in a Banach
space]. Dinamika nelineynykh sistem [Dynamics of
nonlinear systems]. Novosibirsk: Nauka. 151–164.
- Pugachev, V. S., and I. N. Sinitsyn. 1987. Stochastic differential
systems. Analysis and filtering. Chichester, NY:
J. Wiley & Sons. 549 p.
- Azbelev, N. V., V. P. Maksimov, and L.F. Rakhmatulina.
1991. Vvedenie v teoriyu funktsional’no-differentsial’nykh
uravneniy [Introduction to the theory of functional differential
equations]. Moscow: Nauka. 280 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems.
Theory and applications. Singapore:World Scientific.
908 p.
[+] About this article
Title
CONDITIONALLY OPTIMAL FILTERING AND EXTRAPOLATION FOR DIFFERENTIAL GAUSSIAN IMPLICIT STOCHASTIC SYSTEMS AT AUTOCORRELATED NOISE IN OBSERVATIONS
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 19-25
Cover Date
2024-12-26
DOI
10.14357/19922264240403
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
autocorrelated observation noise; conditionally-optimal extrapolation; conditionally-optimal filtering; explicit stochastic system; implicit stochastic system
Authors
I.N. Sinitsyn
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|