Informatics and Applications
2024, Volume 18, Issue 4, pp 10-18
FILTERING OF A CLASS OF MARKOV JUMP PROCESSES BY HETEROGENEOUS OBSERVATIONS WITH ADDITIVE NOISES
- A. V. Borisov
- Yu. N. Kurinov
- R. L. Smeliansky
Abstract
The paper is devoted to the optimal filtering problem of a class of Markov jump processes. The
estimated system state is a Markov jump process with a finite set of possible states representing the probabilistic
distributions. The available measurement information includes continuous and counting observations. The
continuous observation is a function of the system state corrupted by an independentWiener process. The counting
observation intensity also depends on the state. The filtering problem is to find the conditional mathematical
expectation of a scalar function of the state (a signal process) given the available observations. The required estimate
represents the solution to a system of the stochastic differential system. The paper also introduces an analog
of the Kushner–Stratonovich equation describing the temporal evolution of the state conditional distribution.
A numerical example illustrates the performance of the proposed filtering estimate. It presents the monitoring
of the quality state and numerical parameters of a communication channel given the oscillating observations of
round-trip time and the flow of the packet losses.
[+] References (15)
- Crisan, D. 2014. The stochastic filtering problem: A brief
historical account. J. Appl. Probab. 51A:13–22. doi:
10.1239/jap/1417528463.
- Kolmanovskii, V., and L. Shaikhet. 1987. Estimation of
the solutions of linear stochastic integral equations. J.Appl.
Math. Mech. — USS 51(5):607–612. doi: 10.1016/0021-
8928(87)90010-4.
- Ahmed, N., and C. Charalambous. 2002. Filtering for
linear systems driven by fractional Brownian motion.
SIAM J. Control Optim. 41(1):313–330. doi: 10.1137/
S0363012900368715.
- Rozovskiy, B. 1983. Evolyutsionnye stokhasticheskie sistemy.
Lineynaya teoriya i prilozheniya k statistike sluchaynykh
protsessov [Evolutionary stochastic systems. Linear theory
and applications to statistics of random processes].
Moscow: Nauka. 208 p.
- Liptser, R. Sh., and A.N. Shiryayev. 1989. Theory of martingales.
New York, NY: Springer. 812 p.
- Borisov, A. V., Yu. N. Kurinov, and R. L. Smelyansky. 2024.
Veroyatnostnyy analiz klassa markovskikh skachkoobraznykh
protsessov [Probabilistic analysis of a class ofMarkov
jump processes]. Informatika i ee primeneniya — Inform.
Appl. 18(3):30–37. doi: 10.14357/ 19922264240304.
EDN: XPVTGJ.
- Borisov, A. V. 2004. Analysis and estimation of the states
of special jump Markov processes. II. Optimal filtration
in wiener noise. Automat. Rem. Contr. 65(5):741–
754. doi: 10.1023/B:AURC.0000028322.97957.ca. EDN: QRZEHI.
- Wong, E., and B. Hajek. 1985. Stochastic processes in engineering
systems. New York, NY: Springer. 361 p. doi:
10.1007/978-1-4612-5060-9.
- Liptser, R. S., and A.N. Shiryaev. 1974. Statistika
sluchaynykh protsessov (nelineynaya fil’tratsiya i smezhnye
voprosy) [Statistics of random processes. Nonlinear
filtering and related problems]. Seriya “Teorya veroyatnostey
i matematicheskaya statistika” [Probability theory
and mathematical statistics ser.].Moscow: Nauka. 696 p.
- Lukyanenko, A., E. Morozov, and A. Gurtov. 2010. Analiz
setevogo protokola s obshchey funktsiey rasshireniya okna
peredachi soobshcheniya pri konfliktakh [Analysis of
a link protocol with a general contention window backoff
function]. Informatika i ee primeneniya — Inform. Appl.
4(2):46–52. EDN:MRMSXH.
- Borisov, A. 2014. Primenenie algoritmov optimal’noy
fil’tratsii dlya resheniya zadachi monitoringa dostupnosti
udalennogo servera [Monitoring remote server accessibility:
The optimal filtering approach]. Informatika
i ee primeneniya — Inform. Appl. 8(3):53–69. doi:
10.14375/19922264140307. EDN: SMPBCB.
- Borisov, A., A. Bosov, and G. Miller. 2016. Modelirovanie
i monitoring sostoyaniya VoIP-soedineniya
[Modeling and monitoring of VoIP connection]. Informatika
i ee primeneniya — Inform. Appl. 10(2):2–13. doi:
10.14357/19922264160201. EDN: WCBWUH.
- Borisov, A., and I. Sokolov. 2020. Optimal filtering
of Markov jump processes given observations with
state-dependent noises: Exact solution and stable numerical
schemes. Mathematics 8(4):506. 22 p. doi:
10.3390/math8040506.
- Borisov, A. 2020. L1-optimal filtering of Markov jump
processes. II. Numerical analysis of particular realizations
schemes. Automat. Rem. Contr. 81(12):2160–2180. doi:
10.1134/S0005117920120024. EDN: OMSFCH.
- Borisov, A. V., and A. I. Stefanovich. 2007. Optimal state
filtering of controllable systems with random structure.
J. Comput. Sys. Sc. Int. 46(3):348–358. doi: 10.1134/
S1064230707030021. EDN: LKULAR.
[+] About this article
Title
FILTERING OF A CLASS OF MARKOV JUMP PROCESSES BY HETEROGENEOUS OBSERVATIONS WITH ADDITIVE NOISES
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 10-18
Cover Date
2024-12-26
DOI
10.14357/19922264240402
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov jump process; stochastic differential observation system; observations with additive noises; Kushner–Stratonovich equation
Authors
A. V. Borisov , , Yu. N. Kurinov , and R. L. Smeliansky
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
M. V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1,Moscow 119991, Russian Federation
|