Informatics and Applications
2024, Volume 18, Issue 4, pp 2-9
CONDITIONALLY OPTIMAL FILTERING AND EXTRAPOLATION METHODS FOR OBSERVABLE IMPLICIT STOCHASTIC SYSTEMS
Abstract
The paper is devoted to the development of Pugachev’s conditionally optimal filtering and extrapolation
methods for implicit stochastic systems (StS) reducible to explicit continuous and discrete StS. A special review
in the field of suboptimal and conditionally optimal filtering and extrapolation for continuous and discrete StS
with unsolved derivatives (differences) is given.Mathematical models of implicit continuous and discrete Gaussian
and non-Gaussian StS reducible to explicit StS are presented. It is supposed that observations do not influence
implicit objects of observation and are described by explicit differential (difference) equations. Basic methods
for conditionally optimal filtering and extrapolation in implicit StS reducible to explicit StS at Gaussian and
non-Gaussian noises are developed. Three examples are discussed. Some generalizations are given.
[+] References (14)
- Sinitsyn, I.N. 2024.Metody veroyatnostnogo i statisticheskogo
modelirovaniya neyavnykh stokhasticheskikh sistem
[Probabilistic and statistical modeling methods for
implicit stochastic systems]. Sistemy i Sredstva Informatiki
— Systems and Means of Informatics 34(3):48–66. doi:
10.14357/08696527240305. EDN: RTNRUZ.
- Sinitsyn, I.N. 2024. Analiticheskoe modelirovanie stokhasticheskikh
sistem, ne razreshennykh otnositel’no
proizvodnykh, so sluchaynymi parametrami [Analytical
modeling of stochastic systems with random parameters
and unsolved derivatives]. Sistemy i Sredstva Informatiki
— Systems and Means of Informatics 34(1):4–22. doi:
10.14357/08696527240101. EDN: ZPTXJI.
- Sinitsyn, I.N. 2024. Uslovno-optimal’naya fil’tratsiya
v stokhasticheskikh sistemakh so sluchaynymi parametrami
i ne razreshennykh otnositel’no proizvodnykh [Conditionally
optimal filtering in stochastic systems with
random parameters and unsolved derivatives]. Informatika
i ee Primeneniya — Inform. Appl. 18(3):21–29. doi:
10.14357/19922264240303. EDN: XCXLGD.
- Sinitsyn, I.N. 2024. Uslovno-optimal’naya fil’tratsiya
i upravlenie stokhasticheskimi sistemami, ne razreshennymi
otnositel’no proizvodnykh, so sluchaynymi parametrami
[Conditionally-optimal filtration and control
for stochastic systems with random parameters and unsolved
derivatives]. Sistemy i Sredstva Informatiki — Systems
and Means of Informatics 34(2):3–20. doi: 10.14357/
08696527240201. END: XLRCQE.
- Sinitsyn, I.N. 2007. Fil’try Kalmana i Pugacheva [Kalman
and Pugachev filters]. 2nd ed.Moscow: Logos. 776 p.
- Sinitsyn, I.N., and E.R. Korepanov. 2015. Ustoychivye
lineynye uslovno-optimal’nye fil’try i ekstrapolyatory dlya
stokhasticheskikh sistem s mul’tiplikativnymi shumami
[Stable linear conditionally optimal filters and extrapolators
for stochastic systems with multiplicative noises].
Informatika i ee Primeneniya — Inform. Appl. 9(1):70–75.
doi: 10.14357/19922264150106. EDN: TVXFFB.
- Sinitsyn, I.N., and E.R. Korepanov. 2016. Normal’nye
uslovno-optimal’nye fil’try i ekstrapolyatory Pugacheva
dlya stokhasticheskikh sistem, lineynykh otnositel’no sostoyaniya
[Normal Pugachev conditionally-optimal filters
and extrapolators for state linear stochastic systems]. Informatika
i ee Primeneniya — Inform. Appl. 10(2):14–23.
doi: 10.14357/19922264160202. EDN: WCBWUR.
- Sinitsyn, I.N., and E.R. Korepanov. 2015. Normal’nye
uslovno-optimal’nye fil’try Pugacheva dlya differentsial’nykh
stokhasticheskikh sistem, lineynykh otnositel’no
sostoyaniya [Normal Pugachev filters for state linear stochastic systems]. Informatika i ee Primeneniya —
Inform. Appl. 9(2):30–38. doi: 10.14357/19922264150204.
EDN: TZBVRV.
- Tolstonogov, A.A., and I.A. Finogenko. 1980. On
functional-differential inclusions in a Banach space with
a nonconvex right-hand side. Soviet Mathematics Doklady
22:320–324.
- Finogenko, I. A. 1980. K voprosu o resheniyakh
funktsional’no-differentsial’nykh vklyucheniy [On the issue
of solutions of functional-differential inclusions].
Prikladnaya matematika i pakety prikladnykh programm
[Applied mathematics and application software packages].
Irkutsk: SEISO AN SSSR. 95–107.
- Finogenko, I.A. 1981. Svoystva mnozhestva resheniy
funktsional’no-differentsial’nykh vklyucheniy [Properties
of the solution set of functional differential inclusions].
Kraevye zadachi [Boundary value problem]. Perm: PPI.
145–149.
- Kolmanovskiy, V.B., and V.R. Nosov. 1981. Ustoychivost’
i periodicheskie rezhimy reguliruemykh sistem s posledstviem
[Stability and periodic modes of regulated systems with
consequences]. Moscow: Nauka. 448 p.
- Finogenko, I.A. 1983. O neyavnykh funktsional’no-differentsial’nykh
uravneniyakh v banakhovom prostranstve
[On implicit functional differential equations in
a Banach space]. Dinamika nelineynykh sistem [Dynamics
of nonlinear systems]. Novosibirsk: Nauka. 151–164.
- Azbelev, N. V., V. P. Maksimov, and L.F. Rakhmatulina.
1991. Vvedenie v teoriyu funktsional’no-differentsial’nykh
uravneniy [Introduction to the theory of functional differential
equations]. Moscow: Nauka. 277 p.
[+] About this article
Title
CONDITIONALLY OPTIMAL FILTERING AND EXTRAPOLATION METHODS FOR OBSERVABLE IMPLICIT STOCHASTIC SYSTEMS
Journal
Informatics and Applications
2024, Volume 18, Issue 4, pp 2-9
Cover Date
2024-12-26
DOI
10.14357/19922264240401
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
conditionally optimal extrapolation; conditionally optimal filtering; implicit stochastic systems; explicit stochastic systems
Authors
I. N. Sinitsyn
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|