Informatics and Applications
2024, Volume 18, Issue 3, pp 69-79
ASYMPTOTIC NORMALITY AND STRONG CONSISTENCY OF RISK ESTIMATE WHEN USING THE FDR THRESHOLD UNDER WEAK DEPENDENCE CONDITION
- M. O. Vorontsov
- O. V. Shestakov
Abstract
An approach to solving the problem of noise removal in a large array of sparse data is considered based
on the method of controlling the average proportion of false hypothesis rejections (False Discovery Rate, FDR).
This approach is equivalent to threshold processing procedures that remove array components whose values do not
exceed some specified threshold. The observations in the model are considered weakly dependent. To control the degree of dependence, restrictions on the strong mixing coefficient and the maximum correlation coefficient are
used. The mean-square risk is used as a measure of the effectiveness of the considered approach. It is possible
to calculate the risk value only on the test data; therefore, its statistical estimate is considered in the work and its
properties are investigated. The asymptotic normality and strong consistency of the risk estimate are proved when
using the FDR threshold under conditions of weak dependence in the data.
[+] References (22)
- Krylov, V.A., G. Moser, S.B. Serpico, and J. Zerubia.
2016. False discovery rate approach to unsupervised image
change detection. IEEE T. Image Process. 25(10):4704–
4718. doi: 10.1109/TIP.2016.2593340.
- Menyhart, O., B. Weltz, and B. Gyorffy. 2021. MultipleTesting.com: A tool for life science researchers
for multiple hypothesis testing correction. PLoS One
16(6):0245824. doi: 10.1371/journal.pone.0245824.
- Abramovich, F., Y. Benjamini, D. Donoho, and
I.M. Johnstone. 2006. Adapting to unknown sparsity by
controlling the false discovery rate. Ann. Stat. 34(2):584–
653. doi: 10.1214/009053606000000074.
- Zaspa, A. Yu., and O. V. Shestakov. 2017. Sostoyatel’nost’
otsenki riska pri mnozhestvennoy proverke gipotez s FDR porogom
[Consistency of the risk estimate of the multiple
hypothesis testing with the FDR threshold]. Vestnik
TvGU. Ser.: Prikladnaya matematika [Herald of Tver
State University. Ser. Applied Mathematics] 1:5–16. doi:
10.26456/vtpmk119. EDN: YFYJXT.
- Palionnaya, S. I., and O. V. Shestakov. 2020. Asymptotic
properties of MSE estimate for the false discovery
rate controlling procedures inmultiple hypothesis testing.
Mathematics 8(11):1913. 11 p. doi: 10.3390/math8111913.
- Shestakov, O. V. 2021. Analiz nesmeshchennoy otsenki
srednekvadratichnogo riska metoda blochnoy porogovoy
obrabotki [Analysis of the unbiased mean-square risk
estimate of the block thresholding method]. Informatika
i ee Primeneniya — Inform. Appl. 15(2):30–35. doi:
10.14357/19922264210205. EDN: DSQQAU.
- Shestakov, O. V. 2021. Porogovye funktsii v metodakh
podavleniya shuma, osnovannykh na veyvlet-razlozhenii
signala [Thresholding functions in the noise suppression
methods based on the wavelet expansion of the signal].
Informatika i ee Primeneniya—Inform. Appl. 15(3):51–56.
doi: 10.14357/19922264210307. EDN: WSEAYG.
- Shestakov, O. V. 2022. Nesmeshchennaya otsenka riska
porogovoy obrabotki s dvumya porogovymi znacheniyami
[Unbiased thresholding risk estimate with two threshold
values]. Informatika i ee Primeneniya — Inform. Appl.
16(4):14–19. doi: 10.14357/19922264220403. EDN:
DZBVLC.
- Farcomeni, A. 2007. Some results on the control of the
false discovery rate under dependence. Scand. J. Stat.
34(2):275–297. doi: 10.1111/j.1467-9469.2006.00530.x.
- Vorontsov,M.O., and O. V. Shestakov. 2023. Srednekvadratichnyy
risk FDR-protsedury v usloviyakh slaboy zavisimosti
[Mean-square risk of the FDR procedure under
weak dependence]. Informatika i ee Primeneniya — Inform.
Appl. 17(2):34–40. doi: 10.14357/19922264230205.
EDN: AVJZDX.
- Vorontsov, M.O. 2024. RMS risk analysis when using multiple
hypothesis testing select parameters of thresholding
under conditions of weak dependence. Moscow University
Computational Mathematics Cybernetics 48:91–97. doi:
10.3103/S027864192470002X.
- Bosq, D. 1996. Nonparametric statistics for stochastic processes:
Estimation and prediction. Lecture notes in statistics
ser. New York, NY: Springer Verlag. Vol. 110. 188 p.
- Mallat, S. 1999. A wavelet tour of signal processing. New
York, NY: Academic Press. 857 p.
- Donoho, D., and I.M. Johnstone. 1994. Ideal spatial
adaptation via wavelet shrinkage. Biometrika 81(3):425–
455. doi: 10.1093/biomet/81.3.425.
- Donoho, D., and I.M. Johnstone. 1995. Adapting to
unknown smoothness via wavelet shrinkage. J. Am.
Stat. Assoc. 90(432):1200–1224. doi: 10.1080/01621459.
1995.10476626.
- Marron, J. S., S. Adak, I.M. Johnstone, M.H. Neumann,
and P. Patil. 1998. Exact risk analysis of wavelet regression.
J. Comput. Graph. Stat. 7(3):278-309. doi: 10.1080/
10618600.1998.10474777.
- Jansen, M. 2001. Noise reduction by wavelet thresholding.
Lecture notes in statistics ser. New York, NY: Springer
Verlag. Vol. 161. 217 p.
- Kudryavtsev, A.A., and O. V. Shestakov. 2016. Asymptotic
behavior of the threshold minimizing the average probability
of error in calculation of wavelet coefficients. Dokl.
Math. 93(3):295–299. doi: 10.1134/S1064562416030212.
EDN: WUMUEV.
- Kudryavtsev, A.A., and O. V. Shestakov. 2016. Asymptotically
optimal wavelet thresholding in the models with
non-Gaussian noise distributions. Dokl. Math. 94(3):615–
619. doi: 10.1134/S1064562416060028. EDN: YUYVUP.
- Eroshenko, A.A. 2015. Statisticheskie svoystva otsenok
signalov i izobrazheniy pri porogovoy obrabotke koeffitsientov
v veyvlet-razlozheniyakh [Statistical properties of
signal and image estimates under thresholding of coefficients
in wavelet decompositions]. Moscow: MSU. PhD
Diss. 82 p.
- Peligrad, M. 1996. On the asymptotic normality of sequences
of weak dependent random variables. J. Theor.
Probab. 9(3):703–715. doi: 10.1007/BF02214083.
- Serfling, R. J. 2002. Approximation theorems of mathematical
statistics. New York, NY: John Wiley & Sons. 371 p.
[+] About this article
Title
ASYMPTOTIC NORMALITY AND STRONG CONSISTENCY OF RISK ESTIMATE WHEN USING THE FDR THRESHOLD UNDER WEAK DEPENDENCE CONDITION
Journal
Informatics and Applications
2024, Volume 18, Issue 3, pp 69-79
Cover Date
2024-09-20
DOI
10.14357/19922264240309
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
thresholding; multiple hypothesis testing; risk estimate
Authors
M.O. Vorontsov , and O. V. Shestakov , ,
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1,Moscow 119991, Russian Federation
Moscow Center for Fundamental and Applied Mathematics, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1,Moscow 119991, Russian Federation
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|